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ABSTRACT 

Slender structures representing civil, mechanical and aerospace systems such as long-span 

bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-

booms and aircraft wings could experience vortex-induced and buffeting excitations below 

their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical 

wind speed because these are flexible. Traditional linear aerodynamic theories that are 

routinely applied for their response prediction are not valid in the galloping, or near-flutter 

regime, where large-amplitude vibrations could occur and during non-stationary and transient 

wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. 

The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of 

aerodynamic functions in frequency domain that are valid for straight-line winds which are 

stationary or weakly-stationary. Application of the frequency domain formulation is 

restricted from use in the nonlinear and transient domain because these are valid for linear 

models and stationary wind. The time-domain aerodynamic force formulations are suitable 

for finite element modeling, feedback-dependent structural control mechanism, fatigue-life 

prediction, and above all modeling of transient structural behavior during non-stationary 

wind phenomena. This has motivated the developing of time-domain models of aerodynamic 

loads that are in parallel to the existing frequency-dependent models. Parameters defining 

these time-domain models can be now extracted from wind tunnel tests, for example, the 

Rational Function Coefficients defining the self-excited wind loads can be extracted using 

section model tests using the free vibration technique. However, the free vibration method 

has some limitations because it is difficult to apply at high wind speeds, in turbulent wind 

environment, or on unstable cross sections with negative aerodynamic damping.  In the 
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current research, new algorithms were developed based on forced vibration technique for 

direct extraction of the Rational Functions. The first of the two algorithms developed uses the 

two angular phase lag values between the measured vertical or torsional displacement and the 

measured aerodynamic lift and moment produced on the section model subject to forced 

vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-

freedom tests (vertical or torsional) to identify all the four Rational Functions or 

corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-

torsional vibration model. It was applied to a streamlined section model and the results 

compared well with those obtained from earlier free vibration experiment. The second 

algorithm that was developed is based on direct least squares method. It uses all the data 

points of displacements and aerodynamic lift and moment instead of phase lag values for 

more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-

freedom motions. A two-degree-of-freedom forced vibration system was developed and the 

algorithm was shown to work well for both streamlined and bluff section models. The 

uniqueness of the second algorithms lies in the fact that it requires testing the model at only 

two wind speeds for extraction of all four Rational Functions. The Rational Function 

Coefficients that were extracted for a streamlined section model using the two-DOF Least 

Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model 

subject to straight-line, gusty and boundary-layer wind.  

  



www.manaraa.com

1 
 

CHAPTER 1. GENERAL INTRODUCTION 

WIND EFFECT ON FLEXIBLE STRUCTURES 

When designing flexible structures for wind, dynamic wind loads are of primary interest to 

structural engineers. The dynamic wind loads can be generally classified as: self-excited, 

buffeting and vortex-shedding induced.  

For a given structure immersed in wind, the motion of the structure perturbs the flow around 

it such that the modified flow pattern produces additional aerodynamic damping and stiffness 

loads that are called self-excited wind loads. The self-excited wind loads will either transfer 

energy from wind to the structural motion or help in dissipating the kinetic energy of the 

structure. Above a certain wind speed, the energy increment exceeds the energy dissipation 

from wind such that the kinetic energy of the structure keeps increasing which makes the 

structure dynamically unstable. This critical wind speed at which the structure becomes 

unstable is called flutter speed.  

Buffeting wind loads are fluctuating loads acting on a structure because of its location in the 

atmospheric boundary layer. The fluctuating wind loads are induced by turbulence in the up-

coming wind and can be calculated based on a statistical description of the turbulence 

characteristics of the undisturbed flow approaching the structure.  Using admittance function 

formulation proposed by Davenport (1962), the turbulence characteristics can be converted 

from the wind properties into wind loads on the structure. The frequency-domain admittance 

function formulation can be also transformed to time-domain indicial function formulation 

which can be used in time-domain structural analysis. 
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Shedding of alternating vortices from the top and bottom surfaces of a solid body immersed 

in wind could be observed in its wake. The shed vortices are accompanied by periodically 

changing pressure distributions around the bluff body which can induce periodic 

aerodynamic loads on the body, termed as vortex-shedding induced loads. As observed by 

Strouhal (1878) on a circular cross section cylinder, of a given diameter, the product of 

vortex-shedding frequency (fs) and diameter (D) divided by flow velocity (U) is a constant 

known as Strouhal number (St). The Strouhal number is constant for a given cross section for 

a wide range of wind speeds. Thus, the vortex-shedding frequency of a cross section 

increases linearly with the up-coming wind velocity, and when it coincides with a natural 

frequency of the structure with that cross section, the resonance phenomenon occurs. This 

phenomenon, known as lock-in, appears within a certain range of wind velocity. 

LITERATURE REVIEW AND MOTIVATION FOR CURRENT 

RESEARCH 

Due to the development of high-strength material and modern construction technology in 

civil and construction engineering, the structures are becoming taller and longer. The tallest 

building in the world, the Burj Khalifa Tower in Dubai, has a height of 828m, while the 

longest suspension bridge in the world, the Akashi Kaikyo Bridge in Japan has a main span 

length of 1991m. These very long or tall structures are flexible and very vulnerable to wind 

loads. Thus, during the design process of these flexible structures, it is definitely necessary to 

perform structural analysis on them with expecting wind environment, so that large 

amplitude structural motion and instability of structural response can be avoided in the future.    

http://en.wikipedia.org/wiki/Burj_Khalifa
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The aeroelastic behavior of models can be studied either through full structure model test or 

section model test. A full structure model is a geometrically-scaled three-dimensional model 

with scaled mechanical properties that can be tested in a wind tunnel subjected to a scaled 

atmospheric boundary layer flow. The advantage of a full-structure model is that the response 

and aerodynamic loads of the prototype structure can be easily obtained by simply scaling the 

measurements of the model and the wind directionality and upstream terrain effects can be 

determined. However, full structure models are usually very expensive and they need to be 

tested in wind tunnels with very large test sections. A section model is an appropriately 

scaled and detailed geometrical model of a typical two-dimensional section of a structure and 

is commonly used to determine the aeroelastic response characteristics of a prototype 

structure with a particular cross-sectional shape. The aeroelastic loads and/or response of a 

section model are used to determine its aeroelastic properties that can be analytically 

extended to predict the response and loads of the corresponding prototype structure. 

In section model structural analysis, the equations of motion for the two-dimensional cross 

section can be written in Equations (1)-(3). 

vssebhhh LLLhhhm  )2( 2            (1) 

sebppp DDpppm  )2( 2             (2) 

vsseb MMMI  )2( 2 
           (3) 

where m and I are the mass and mass moment of inertia per unit length of the structure, h, p 

and   are vertical, lateral and torsional displacement of the structure as a function of time, 
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( ̇ ) and ( ̈ ) are corresponding velocity and acceleration, respectively, L, D and M are 

dynamic lift, drag and moment per unit length applied on the structure,         are natural 

frequency and damping ratio of corresponding degree-of-freedom, and the subscript b, se and 

vs stand for buffeting load, self-excited load and vortex shedding load, respectively.  

In Equations (1)-(3), all the displacements are only functions of time. However, in three-

dimensional full structure model, the displacements are functions of time, t, as well as 

spanwise position, x. Modal analysis can be used in a full structure analysis where the modal 

equations have the form of Equations (1)-(3) and the total response of the structure can be 

calculated as the summation of responses in all modes included in the analysis.  

For some structures whose dynamic response in lateral direction is not as prominent as the 

other two directions, the equations of motion can be simplified such that lateral displacement, 

p, and drag, D, are neglected and the equation of motion in the lateral direction is dropped in 

the analysis. 

Flutter Phenomenon of Flexible Structures and Frequency Domain Flutter Analysis 

The first famous event that drew people’s attention to wind load effects on structures is the 

collapse of Tacoma Narrows Bridge that happened in 1940. The failure of this bridge was 

caused by a dramatic aeroelastic instability phenomenon which is called flutter. When a 

structure moves in wind, sometimes the wind around the structure could do positive work on 

it and the kinetic energy is transported from wind to the structure, or the wind could also do 

negative work on the structure and the kinetic energy of the structure is dissipated by its 

interaction with wind. When energy dissipation in the structural system is larger than the 

energy generation in the structure from wind, the structure is stable and its motion would get 
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damped out. Otherwise, the motion of the structure will diverge since the kinetic energy of 

the structure will keep increasing, and this phenomenon is called flutter. For single mode 

response of a structural system, the flutter phenomenon could happen when the total damping 

ratio has decreased to a negative value because of the negative damping brought by the self-

excited wind loads. For multi-degree-of-freedom system, the flutter phenomenon could 

happen even when the total damping in all the modes are positive, since it could be caused by 

coupling between different modes leading to loss of stiffness.  

In 1935, Theodorsen derived a mixed frequency-time domain formulation which is 

commonly used for the study of unsteady aerodynamic behavior of streamlined airfoil 

sections. By adopting a generalization of Theodorsen’s theory (1935), Scanlan and Tomko 

(1971) developed a flutter derivative formulation to solve unsteady aerodynamic problems on 

bluff bodies like civil structures. The original formulation was proposed in a form with two-

degree-of-freedom, and was extended to a general three-degree-of-freedom form later as 

shown in Equations (4)-(6). 


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where ρ = air density, U = mean wind speed, B = width of bridge deck model, K = Bω/U = 

reduced frequency, where ω = 2πf = circular frequency of vibration, Hi
*
, Ai

*
, Pi

*
 (i=1,…,6) 
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are aeroelastic coefficients known as flutter derivatives that are functions of reduced velocity 

(          . The number of flutter derivatives is 18 for a three-degree-of-freedom 

system, while this number reduces to 8 for a two-degree-of-freedom system. 

The flutter derivatives in the formulation mentioned earlier are frequency dependent 

parameters which need to be extracted from wind tunnel tests. In decades following the early 

seventies, various methods, including system-identification based ones to extract the flutter 

derivatives from wind tunnel experiments, were developed by Scanlan and his co-workers 

(Scanlan and Tomko, 1971, Huston, 1988, Scanlan, 1978, Scanlan and Jones, 1990, Sarkar et 

al., 1994) and many others. Sarkar et al. (1994)’s Modified Ibrahim Time Domain (MITD) 

method, Brownjohn and Jakobsen (2001)’s Covariance Block Hankel Matrix (CBHM) 

method, Gu et al. (2000), Zhu et al. (2002), Gan Chowdhury and Sarkar (2004)’s Iterative 

Least Squares (ILS) method, Chen et al. (2008), Chen and Kareem (2008), Bartoli et al. 

(2009), Ding et al. (2010) and a few other efficient methods were developed and accepted as 

standard methods for the identification of flutter derivatives. All extraction methods can be 

classified into two types, namely, free vibration and forced vibration, based on the excitation 

of the section model tests. In free vibration methods, the section model is released from 

initial displacements and then allowed to vibrate freely in the wind tunnel at fixed wind 

speed. The section model test can be done in one-degree-of-freedom, two-degree-of-freedom 

or all three-degree-of-freedom. The test is repeated at several wind speeds and the model 

displacement time histories that are recorded at an individual wind speed are substituted into 

a system-identification based algorithm to extract flutter derivatives. In forced vibration 

methods, the section model is driven to vibrate sinusoidally with fixed amplitude and 
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frequency. The phase lag between the model displacement time history and the aerodynamic 

load time history, computed from surface pressure measurement or direct force measurement, 

is identified and used in the algorithm to extract flutter derivatives. Unlike free vibration tests, 

two separate one-degree-of-freedom tests need to be conducted to get all 8 flutter derivatives 

associated with two-degree-of-freedom (vertical and torsional) model formulation. 

In flutter analysis, one method known as Scanlan’s root-finding approach (Scanlan, 1981) is 

used where a value of reduced frequency, K, is chosen and the values of flutter derivatives 

corresponding to that K are obtained from plots of these experimental functions. The values 

of flutter derivatives are substituted into Equations (4)-(6) and Equations (1)-(3) and a matrix 

analysis is then performed on the equations of motion where roots of the real and imaginary 

parts (ω) of determinant of the coefficient matrix multiplying the assumed displacement 

solution vector are found by equating them to zero. This process is repeated by varying K 

and the roots (ω) of the real and imaginary parts are plotted as a function of K. The 

intersection of the two curves defines the critical frequency (ωc) and critical reduced 

frequency (Kc=Bωc/Uc). The critical flutter velocity (Uc) can be easily found using Uc= Bωc/ 

Kc. 

Time Domain Analysis and Motivation for Current Research 

Frequency domain method is suitable to problems corresponding to stationary or weakly-

stationary wind input and small amplitudes of structural response. However, to incorporate 

the nonstationarity of wind environment and nonlinearity of structural vibration in the 

analysis, time domain formulations for aerodynamic forces (Lin and Ariaratnam, 1980; 

Scanlan, 1984; Tsiatas and Sarkar, 1988; Scanlan, 1993; Chen and Kareem, 2002) were 
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proposed and investigated. Moreover, these time domain formulations are also suitable for 

finite element modeling, feedback-dependent structural control mechanism and fatigue-life 

prediction.  

In time domain, self-excited forces can be directly formulated in indicial functions (Tsiatas 

and Sarkar, 1988; Caracoglia and Jones, 2003), or they can be first written in Rational 

Functions (Roger, 1977; Karpel, 1982) in Laplace domain, and then be transformed into time 

domain. The Rational Function formulation with one lag term for two-degree-of-freedom 

system can be written as Equation (7) and the corresponding time domain formulation is as 

Equations (8) and (9). 
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where B= width of the bridge deck, U= mean wind velocity,      is nondimensional 

Laplace domain variable, K= Bω/U= reduced frequency of the vibration, where ω= 2πf= 

circular frequency of the vibration, ‘^’ denotes the Laplace transformation of the 
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corresponding time domain function, Lse and Mse are self-excited lift and moment, 

respectively, h is vertical displacement and α is torsional displacement. 0A , 1A ,   and λ are 

Rational Function Coefficients. 0A , 1A are stiffness matrix and damping matrix, respectively, 

and   is a lag matrix, all of order 2×2,   is a lag coefficient, 

The two-degree-of-freedom flutter derivative formulation can be transformed into Laplace 

domain as shown in Equation (10). 
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where H1
*
- H4

*
 and A1

*
- A4

*
are flutter derivatives for a two-degree-of-freedom system. 

Using relationships between Equation (7) and Equation (10), the coefficients in Rational 

Function formulation can be obtained from flutter derivatives by approximation techniques; 

these relationships are defined later in chapters 2 and 3. Rational Function formulation has 

been applied to bridge aerodynamics by several researchers including Xie (1988), Xiang et al. 

(1988), Wilde et al. (1996) and Chen et al. (2000). However, this is an indirect way to obtain 

Rational Function Coefficients since flutter derivatives need to be obtained first from 

experiments. Thus, to make the process of extracting the rational function coefficients more 

efficient, Gan Chowdhury and Sarkar (2005) developed a new method based on free 

vibration of section models where both displacements and surface pressures of the model 

were simultaneously recorded and used. However, it is known that the free vibration method 

has some limitations compared to the forced vibration method because it is particularly 

unsuitable for higher wind velocities, non-stationary flow and larger amplitudes. Thus, a 
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forced vibration experimental method is required to extract the Rational Functions that will 

be valid for higher wind speeds and larger amplitudes so that these parameters can be applied 

to predict the transient response of structures in non-stationary wind flow like tornadoes, 

microbursts, hurricanes, thunderstorms and gust fronts.  

In current research, the forced vibration technique was developed to extract all Rational 

Function Coefficients for both one degree-of-freedom (one-DOF) and two degree-of-freedom 

(two-DOF) systems. The analytical approach of the forced vibration technique to identify 

flutter derivatives is similar in principle to that described in Matsumoto (1996) and Haan 

(2000). Essentially, while driving the model in a prescribed sinusoidal motion, the pressure is 

measured on the top and bottom surfaces of the model in the streamwise direction. The 

pressure signals are integrated to obtain lift and moment time series. Phase angle differences 

between the motions (the angular and vertical positions) and the aerodynamic forces (the lift 

and the moment) are estimated that can be used to identify the flutter derivatives. Four flutter 

derivatives can be identified at a time with a one-DOF motion and hence two separate one-

DOF tests are usually done to identify all eight flutter derivatives associated with a two-DOF 

system. Following on the same principle, a phase-lag-dependent algorithm was developed for 

a one-DOF (vertical or torsional) system to identify all the Rational Function Coefficients 

corresponding to one phase-lag term in the formulation.  

However, the current forced-vibration techniques for extraction of flutter derivatives (Haan, 

2000, Matsumoto, 1996) or the first method developed in current research for extraction of 

Rational Function Coefficients (Cao and Sarkar, 2010) have some limitations. Firstly, these 

methods are based on the phase difference between simultaneously obtained displacement 
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and aerodynamic load time histories. In a recently concluded comparative and sensitivity 

study (Sarkar et al., 2009), it was shown that in a phase-difference-dependent forced 

vibration technique to extract the four flutter derivatives based on a pure torsional motion 

system, the errors in   
  and    

  could be significant, since slight errors in the phase 

difference obtained from the experiment gets amplified in the formulation that defines   
  and  

  
 . Similar observation was made in the phase-difference-dependent technique to extract 

Rational Function Coefficients (Cao and Sarkar, 2010). Secondly, these methods were all 

based on one degree-of-freedom (DOF) motion (vertical or torsional), and aeroelastic 

coefficients (flutter derivatives or Rational Function Coefficients) associated with two 

degrees of freedom were obtained by combining results from two separate one DOF tests. 

Considering there is a physical difference between the aerodynamics of one DOF and two 

DOF motions, there might be errors introduced in the aeroelastic coefficients obtained by one 

DOF system because the actual aerodynamic interaction of a two DOF system may not be 

captured well. Thus, in current research, another forced vibration method that does not use 

the phase difference is developed to extract all the Rational Function Coefficients 

simultaneously from a two-DOF dynamic system for the first time. Moreover, the method 

developed here is more efficient than earlier ones, since it requires data obtained at two wind 

speeds only to solve for the full set of Rational Function Coefficients.   

Time Domain Aeroelastic Load Prediction and Experimental Validation 

As mentioned earlier, time domain analysis is necessary for wind engineering problems with 

nonstationary wind environment or nonlinear structural characteristics and can be used for 

finite element modeling, feedback-dependent structural control mechanism and fatigue-life 
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prediction. Thus, many scholars have put their efforts in proposing and investigating time 

domain formulations for aeroelastic loads (Lin and Ariaratnam, 1980; Scanlan, 1984; Tsiatas 

and Sarkar, 1988; Scanlan, 1993; Li and Lin, 1995; Scanlan, 2000; Chen et al., 2000; Chen 

and Kareem, 2002; Salvatori and Borri, 2007; Zhang et al., 2011). However, most of 

previous research works in time domain analysis area are concentrated on numerical 

simulations, while experimental validations of time domain formulations are very limited. In 

current research, a validation procedure is performed through wind tunnel tests on a section 

model. In the future, based on the experimental procedure carried out in this research work, 

approaches of revising current time domain formulations for different types of problems (e.g. 

non-stationary winds, large amplitude motions, etc.) could also possibly be developed. 

In current research, self-excited forces were simulated using Rational Function formulation 

and the coefficients extracted from earlier forced vibration wind tunnel tests. The fluctuating 

buffeting forces can be modeled using aerodynamic admittance functions (Simiu and Scanlan, 

1996; Scanlan and Jones, 1999) in frequency domain and buffeting indicial aerodynamic 

functions in time domain.  Chang et al. (2010) used the relationship between the two 

formulations for buffeting forces and devised a procedure to identify the buffeting indicial 

functions of a structural section. This procedure was used here to identify the buffeting 

indicial functions for the streamlined bridge deck. In this research, these time domain 

functions for self-excited and buffeting forces were used to predict the total aeroelastic loads 

acting on a streamlined bridge deck section model with an aspect ratio (B/D) of 15:1 that was 

subjected to stationary and different gusty winds (ramp-up, ramp-down, bump-shaped), and 

compared with wind tunnel measurements for validation of these time-domain formulations 
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of aeroelastic loads. For first set of experiment, smooth winds were applied on the model. In 

the second set of experiment, two different types of atmospheric boundary layers were 

generated using spires, chains and roughness blocks in the upstream of the section model to 

investigate performance of time-domain formulations in turbulent wind cases.   

THESIS ORGANIZATION 

The current dissertation is written in the format of “Thesis Containing Journal Papers”. The 

dissertation includes four manuscripts out of which three are submitted and under review, 

and the fourth one is to be submitted to a scholarly journal. In addition, a general introduction 

chapter appears at the beginning and a general conclusion chapter appears at the end of the 

dissertation. Because of this “Thesis Containing Journal Papers” format, some repetition 

might be found in the introduction and experimental set-up parts of each chapter. 

The first paper, submitted to Wind and Structures, appears as the second chapter of this 

dissertation. In this paper, an algorithm is presented for direct extraction of these Rational 

Functions from section model tests in forced vibration using phase lag. The motivation for 

using forced-vibration method came from the potential use of these Rational Functions to 

predict aerodynamic loads and response of flexible structures at high wind speeds and in 

turbulent wind environment. Numerical tests were performed to verify the robustness and 

performance of the algorithm under different noise levels that are expected in wind tunnel 

data. Wind tunnel tests in one degree-of-freedom (vertical/torsional) forced vibration were 

performed on a streamlined bridge deck section model whose Rational Functions were 

compared with those obtained by free vibration for the same model. 
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The second paper, submitted to Engineering Structures, appears as the third chapter of this 

dissertation. In this paper, a new algorithm that is developed for direct extraction of the 

Rational Functions from section model tests using forced-vibration technique is presented. 

The new algorithm can be used to extract all the Rational Functions associated with one, two 

or three degree-of-freedom motion (vertical, lateral and torsional) of a section model. To 

validate the new algorithm, forced vibration wind tunnel tests in two degrees of freedom 

(vertical and torsional) were performed on a streamlined bridge deck section model with 

width-to-depth ratio B/D = 15:1 and also a bluff rectangular section model with B/D = 5:1. 

This is a significant improvement from previous forced-vibration methods that require 

separate one-degree-of-freedom model tests which are dependent on phase angle difference 

between aerodynamic loads and displacements. 

The third paper, submitted to Journal of Engineering Mechanics, appears as the fourth 

chapter of this dissertation. In this paper, time domain formulations were used to predict 

aeroelastic loads acting on a rigid bridge deck section model subject to stationary and gusty 

straight-line winds that are smooth or laminar based on the knowledge of upstream wind 

speed and model displacement measurements. In this procedure, Rational Function 

Coefficients are used to formulate the self-excited forces. The coefficients used here were 

recently obtained from wind tunnel tests performed on a streamlined bridge deck section 

model with a smaller geometric scale in smooth flow. The results of the validation using a 

larger section model of this bridge deck subject to a ramp-type gust are presented here. 

The fourth paper appears as the fifth chapter of the dissertation. In this paper, to validate time 

domain formulations in turbulent wind environment, wind tunnel tests were performed with 
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turbulence generated by two different boundary layer set-ups in the up-stream of the section 

model. To incorporate gust effects simultaneously on the prediction of wind loads, different 

types of gusts (ramp-up, ramp-down and bump-shaped) were also generated in the tests.  
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Abstract: Rational Functions are used to express the self-excited aerodynamic forces acting 

on a flexible structure for use in time-domain flutter analysis. The Rational Function 

Approximation (RFA) approach involves obtaining of these Rational Functions from the 

frequency-dependent flutter derivatives by using an approximation. In the past, an algorithm 

was developed to directly extract these Rational Functions from wind tunnel section model 

tests in free vibration. In this paper, an algorithm is presented for direct extraction of these 

Rational Functions from section model tests in forced vibration. The motivation for using 

forced-vibration method came from the potential use of these Rational Functions to predict 

aerodynamic loads and response of flexible structures at high wind speeds and in turbulent 

wind environment. Numerical tests were performed to verify the robustness and performance 

of the algorithm under different noise levels that are expected in wind tunnel data. Wind 

tunnel tests in one degree-of-freedom (vertical/torsional) forced vibration were performed on 
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a streamlined bridge deck section model whose Rational Functions were compared with 

those obtained by free vibration for the same model. 

Keywords: flutter analysis, time-domain method, rational function approximation, forced 

vibration, long-span bridges 

1 INTRODUCTION 

Analysis to predict wind-induced flutter instability of flexible structures is usually conducted 

in frequency domain, since the self-excited aerodynamic forces induced by motion of 

structures are expressed by the well-known flutter derivatives (Scanlan and Tomko 1971) 

that are functions of reduced frequency. Flutter derivatives can be identified at discrete 

reduced frequencies (or reduced velocities) through either free vibration (Chowdhury and 

Sarkar 2003, Chen et al. 2008, Chen and Kareem 2008, Bartoli et al. 2009, Ding et al. 2010) 

or forced vibration (Matsumoto 1996, Haan 2000) method using section models in wind 

tunnels. However, when dealing with wind interacting with nonlinear structures or structures 

excited by non-stationary winds, the time-domain method (Lin and Ariaratnam 1980, 

Scanlan 1993, Chen and Kareem 2002, Caracoglia and Jones 2003, Zhang et al. 2011) is 

more suitable and preferable. Roger (1977) developed a Rational Function Approximation 

(RFA) using least squares (LS) method for approximation of self-excited forces with rational 

functions in Laplace domain that can be used in time-domain analysis. These functions can 

be indirectly extracted from experimentally obtained flutter derivatives using approximation 

techniques. Karpel (1982) developed another RFA formulation using minimum state method 

known as MS-RFA that involves lesser computational work while maintaining higher 
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accuracy of approximation compared to LS-RFA by Roger. RFA formulation has been 

applied to bridge aerodynamics by several researchers including Chen et al. (2000). To 

accelerate the process of extraction of Rational Functions, Chowdhury and Sarkar (2005) 

developed a method through which Rational Functions can be extracted directly from free 

vibration experiments in a wind tunnel at fewer wind velocities compared to those used for 

extracting flutter derivatives. It is known that the free vibration method has some limitations 

compared to the forced vibration method, particularly, at higher wind velocities and for 

turbulent flow. This provides the motivation of developing a forced vibration method to 

extract the Rational Functions from wind tunnel tests. 

In this paper, a new algorithm for forced vibration experimental method is developed for 

direct extraction of Rational Functions.  Results from both numerical simulation and wind 

tunnel tests are presented to validate the algorithm. A streamlined bridge deck section model 

with a chord-to-thickness ratio of about 15:1 was used as an example. 

2 FORMULATION AND ALGORITHM 

In two degree-of-freedom (DOF), self-excited forces acting on the structure can be calculated 

from flutter derivative formulation as given below: 

2 * * 2 * 2 *

1 2 3 4

1
( ) ( ) ( ) ( ) ( )

2
se

h B h
L t U B H K H K H K H K

U U B
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 
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                           (1) 
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
 

 
     
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                       (2) 

where Lse = self-excited lift, Mse = self-excited torsional moment, ρ = air density, U = mean 

wind speed, B = width of bridge deck model, K = Bω/U = reduced frequency, where ω = 2πf 
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= circular frequency of the vibration, h(t,x) = vertical displacement, α(t,x) = torsional 

displacement, (
 ∙ 

) = d( )/dt,  Hi
*
, Ai

*
 (i=1,…,4) = flutter derivatives which are aeroelastic 

coefficients changing with reduced frequency.  

    Applying Laplace transformation on Equations (1) and (2): 

2
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    (3) 

where p = iK = nondimensional Laplace domain variable, and ‘^’ denotes the Laplace 

transformation of the corresponding time domain function. By Karpel (1982)’s minimum 

state RFA formulation with neglect of second order term, the matrix  ̃ can be approximated 

by  , which is a matrix of rational functions in Laplace domain, as given below: 

 
1

0 1( )Q p A A p D pI R Ep


                                                                                         (4) 

where       are stiffness matrix and damping matrix, respectively,         are lag matrices, 

  is a diagonal matrix with diagonal elements of lag coefficients, and the dimension of the 

matrix   is the number of lag terms. Since Chowdhury and Sarkar (2005) showed that, the 

formulation with even one lag term works well for streamlined and bluff bridge decks, in this 

paper, only formulation with one lag term is used. With only one lag term, Equation (4) can 

be written as given below: 

 11 11 1211 12

11 120 1 0 1 0 1

21 21 2221 22
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Q Q D F Fp p p

Q p A A p E E A A p A A p F
Q Q D F Fp p p  
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    (5) 

where         and λ are referred here as Rational Function Coefficients. 

     Substituting Equation (5) into Equation (3), self-excited aerodynamic forces in Laplace 

domain can be obtained: 
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To obtain higher accuracy, formulation with two lag terms could be used, as derived in 

Chowdhury (2004).  

Applying inverse Laplace transformation on Equations (6) and (7), time domain 

formulations can be obtained as given below: 
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In a forced vibration method, the model is constrained to vibrate in one-DOF, vertical, 

torsional or horizontal motion, where the displacement is a sinusoidal motion at a prescribed 

amplitude and frequency. For the current study, experiments in vertical and torsional degrees 

of freedom were performed to validate the new method, respectively.  

In vertical motion experiment, the displacements   and   can be written as: 

 0 cos hh h t ,                                                                                                    (10) 
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At a certain mean wind velocity,   , since there is a lag between self-excited aerodynamic 

loads (lift and moment) and the corresponding displacement, the self-excited loads can be 

written as: 

 1 1

0 cosse h h LhL L t                                                                                                      (11) 

 1 1

0 cosse h h MhM M t                                                                                                 (12) 

Substituting Equations (10) and (11) into Equation (8): 

     
 

1 1 1 11
0 0

2

02 0 01
1 1 2 3

1 1 1
1

sin( ) cos( )

cos( )cos( ) sin( )1

2

h h h Lh h h Lh

h hh h h

U
L t L t

B

h th t h tU B
U B

B B B U B

     

   
   

   

   
          

          (13) 

By matching coefficients of    (     and    (     above, following equations can be 

obtained: 

       

   

1
2 21 1 0 1

1 1 1 3
1 1

0 1

1
21 1 0

1 1 2
1

0

1
sin cos

2

1
cos sin

2

h
h Lh Lh h

h
h Lh Lh h

L U B
B U U B

h B U

L
B U U B

h

       

      

   
             

   

                              (14a) 

Equations (14a) can be re-written in matrix form: 

   

 

 

 

 

1 1
13 22 10

1 1 1 1 1
20 01

1 11
2 0 010

31 1 1
0

1 1
0 cos

2 2 sin

cos1
0 0 sin

2

h
h Lh

h Lh

h

h Lhh
h Lh

L
U U B U

h LB

h LL
U B U

h



   
 




  



 
   

                 
   
    

 

                (14b) 

Since the above equations have four unknowns,  
1 1

  to  
3 1

  and λ, it cannot be solved. 

However, if similar equations are written for two more wind velocities,    and   , and 
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combined with Equation (14b) , the following matrix of six equations in terms of the four 

unknowns can be obtained: 

1 1 1h h hC X D                                                                                                                  (15) 

where 

   

 

   

 

   

 

1
3 22 10

1 1 1

0

1
2 10

1 1

0

2
3 22 20

2 2 2

0

1 2
2 20

2 2

0

3
3 22 30

3 3 3

0

3
2 30

3 3

0

1 1
0 cos

2 2

1
0 0 sin

2

1 1
0 cos

2 2

1
0 0 sin

2

1 1
0 cos

2 2

1
0 0 sin

2

h
h Lh

h
h Lh

h
h Lh

h

h
h Lh

h
h Lh

h
h Lh

L
U U B U

h

L
U B U

h

L
U U B U

h
C

L
U B U

h

L
U U B U

h

L
U B U

h

   

  

   

  

   

  


 






  


 





 



















 
 
 



, 

1 1

0

1 1

0

2 2

0

1 2 2

0 0

3 3

0

3 3

0

sin

cos

sin

cos

sin

cos

h Lh

h Lh

h Lh

h h

h Lh

h Lh

h Lh

L

L

LB
D

h L

L

L














 
 
 
 

  
 
 
 
  

, 

and 

 

 

 

1
1

2
1

1

3
1

hX









 
 
 
 
 
 
 
 

                                                                         

By Least Squares method, the unknown vector     can be solved as: 

1

1 1 1 1 1
4 4 4 1

T T

h h h h hX C C C D


 

   
   

                                                                                           (16a) 

Similarly, by substituting Equations (10) and (12) into Equation (9), the unkown vector 

    can be solved as: 

1

2 2 2 2 2
4 4 4 1

T T

h h h h hX C C C D


 

   
   

                                                                                          (16b) 
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where 

   

 

   

 

   

 

1
3 23 10

1 1 1

0

1
2 2 10

1 1

0

2
3 23 20

2 2 2

0

2 2
2 2 20

2 2

0

3
3 23 30

3 3 3

0

3
2 2 30

3 3

0

1 1
0 cos

2 2

1
0 0 sin

2

1 1
0 cos

2 2

1
0 0 sin

2

1 1
0 cos

2 2

1
0 0 sin

2

h
h Mh

h
h Mh

h
h Mh

h

h
h Mh

h
h Mh

h
h Mh

M
U B U B U

h

M
U B U

h

M
U B U B U

h
C

M
U B U

h

M
U B U B U

h

M
U B U

h

   

  

   

  

   

  


 






  




 













 
 
 
 
 
 
 
 
 



, 

1 1

0

1 1

0

2 2

0

2 2 2

0 0

3 3

0

3 3

0

sin

cos

sin

cos

sin

cos

h Mh

h Mh

h Mh

h h

h Mh

h Mh

h Mh

M

M

MB
D

h M

M

M














 
 
 
 

  
 
 
 
  

, and 

 

 

 

4
1

5
1

2

6
1

hX









 
 
 
 
 
 
 
 

                                                                         

In this algorithm, data from experiments at only three wind speeds (U1 to U3) are needed 

which is the minimum requirement for the least squares method. However, to increase the 

accuracy of the algorithm, data collected at more number of wind speeds could be included.  

This will add more number of rows in the matrix hiC and vector hiD .  

Finally, from vectors     and    , (  )
  

, (  )
  

, (  )
  

, (  )
  

, ( )
  

, ( )
  

 and   

can be obtained, and     and     can be obtained from Equation (5). Following a similar 

procedure, using data from forced vibration experiments under torsional motion of the 

model(  )
  

, (  )
  

, (  )
  

, (  )
  

, ( )
  

, ( )
  

 and  ，as well as             , can be 

obtained. It is noted that   for the vertical motion case and torsional motion case may not be 

the same. 
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Thus, this algorithm will require simultaneous measurements of the displacements (h or α) 

along with the surface pressures on the model that will help compute the self-excited forces, 

lift (Lse) and moment (Mse). Amplitudes of the self-excited forces (Lse and Mse) that are 

computed from pressures and their phase lags ( ’s) with respect to displacement (h or α) 

along with amplitude and frequency of the displacement and the mean wind speeds are used 

as input to the algorithm. 

3 EXPERIMENTAL SET-UP 

3.1 Wind tunnel used 

The experiments were performed in the Bill James Open-Return Wind Tunnel, which is 

located in the Wind Simulation and Testing Laboratory (WiST Lab) in the Department of 

Aerospace Engineering at Iowa State University. This wind tunnel has a test section of 

0.915m (3.0ft) width by 0.762m (2.5ft) height and its maximum wind velocity is 75 m/s (246 

ft/s).   

3.2 Model, suspension system and forced vibration mechanism 

A streamlined bridge deck section model was used in the experiment as shown in Fig. 1 and 

2. The model is composed of a shallow box girder section and two semi-circular fairings at 

the edges. The length, chord length and thickness of the model are about 0.533m, 0.3m, and 

0.02m, respectively. The three-DOF model suspension system and two Plexiglas end plates 

that were used to reduce the edge defects on the model are shown in Fig. 2. This system was 

developed by Sarkar et al. (2004). The suspension system enables vertical, horizontal and 

torsional motions of the model. In the current experiments, sinusoidal vertical and torsional 

motions of the model with constant amplitudes and frequencies are realized by the driving 
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mechanism connected to the model suspension system with four aluminum rods as shown in 

Fig. 2. The entire mechanism is driven by two motors which are placed above the test section, 

as seen in Fig. 3. By changing the rotating speed of two motors using two separate controllers, 

the two frequencies of model vibration in two degrees of freedom can be changed 

independently.  

 

Figure 1. Cross section of the streamlined bridge deck model used in the experiment 

 

                

Figure 2. Bridge deck model and suspension system       Figure 3. Driving mechanism 

 

Motors 

Driving Rods 

End Plates 
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3.3 Displacement measurement 

The vertical displacement of the model was measured by measuring the elastic force in each 

of two springs which is connected to the model at one end and a strain gage force transducer 

at the other end. The torsional displacement was measured by measuring the torque at one 

end of the model shaft using a torque transducer which is mounted on the suspension system. 

LabView was used for data acquisition, where the sampling rate was set at 625Hz.  

3.4 Aerodynamic force measurement 

The algorithm stated in this paper, in addition to the displacement time histories, requires the 

time histories of aerodynamic forces acting on the model while it is vibrating. Therefore, 

surface pressures were measured on the model including the fairings through a row of 

pressure taps located on the upper and lower surfaces of the model along the mid-plane. In 

total, forty-two pressure taps were used in this test, equally distributed on both the surfaces. 

The pressure taps are denser on the upstream side than the downstream side of the model. 

Two 64-channel pressure modules (Scanivalve ZOC33/64 Px) were used to measure the 

pressure. The sampling rate for pressure measurement was 312.5Hz (half of displacement 

sampling rate) in the experiment. To synchronize the pressure data with the displacement 

data, the pressure transducers were set to work in external-trigger mode. The LabView 

program that was used for displacement data acquisition, was programmed to output a digital 

signal when the displacement data acquisition started, so that the pressure data acquisition 

system would receive this external signal and get triggered to start the acquisition of pressure. 

A separate program RAD (Scanivalve) was used to collect the pressure data. 
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4 RESULTS AND DISCUSSIONS 

4.1 Numerical tests and results 

To validate the algorithm as presented here, numerical tests were done before using it with 

wind tunnel data. Firstly, the displacement time history of the model was generated as a 

sinusoidal function with the same amplitude and frequency as those of the wind tunnel tests. 

Secondly, the first derivative of the displacement history was generated through central 

difference method. Using the flutter derivatives for the cross section mentioned here 

(Chowdhury and Sarkar, 2003, 2004), the aerodynamic lift and moment time histories (Lse 

and Mse) were generated. Using the lift, moment and displacement time histories as input, 

rational function coefficients were extracted using the algorithm developed here. The 

relationship between rational function coefficients and flutter derivatives, as given below, 

were used to calculate the flutter derivatives for comparison with those used: 

* 2

1 11( ) /H imag Q  , * 2

4 11( ) /H real Q  ,  * 2

1 21( ) /A imag Q  , * 2

4 21( ) /A real Q      

2

12

*

2 /)( KQimagH  , 2

12

*

3 /)( KQrealH  , 2

22

*

2 /)( KQimagA  , 2

22

*

3 /)( KQrealA 
      

(17) 

An excellent agreement between the two sets of flutter derivatives proved the feasibility of 

the algorithm for extraction of rational function coefficients.  

However, in a wind tunnel experiment, the test data can be contaminated with noise. 

Therefore, to test the robustness of the algorithm, white noise time histories with a normal 

probability distribution were scaled and added to the displacement and force time histories 

that were generated, and then rational function coefficients were extracted from these noisy 

data using the algorithm. The standard deviation of the noise time histories was chosen as 10% 
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and 20% of the respective signal amplitudes. The flutter derivatives extracted using Equation 

(17) from these noisy data were compared with those extracted from the original numerical 

data, and the percentage errors (root mean square) were calculated as shown in Table 1. In 

Table 1, it is seen that H4*, A4*, H2* and A2* are more sensitive to the noise in the data than 

the rest of the flutter derivatives. However, the errors in all eight flutter derivatives change 

marginally even with the doubling of noise amplitudes. 

Table 1 Percentage errors for derivatives drawn from noisy data 

Noise Amplitudes H1* H4* A1* A4* H2* H3* A2* A3* 

10% 0.3 5.0 0.2 1.8 0.9 0.2 1.1 1.0 

20% 0.4 6.2 0.3 3.6 2.1 0.3 1.8 1.0 

4.2 Experimental results 

For vertical DOF forced vibration of the bridge deck model, wind tunnel tests were 

performed at wind speeds of 4m/s, 6.7m/s and 11.1m/s, while for torsional DOF forced 

vibration, measurements were carried out at wind speeds of 3.6m/s, 10.2m/s and 15.2m/s. 

The model was forced to vibrate at 2.44Hz for vertical motion and 3.28 Hz for torsional 

motion. The rational functions    ,    ,    and    , as obtained by the algorithm and 

method mentioned here, are shown in Fig. 4. For the purpose of validation of the rational 

functions obtained using the proposed algorithm, these were converted to corresponding 

flutter derivatives of the streamlined bridge section and compared with those obtained earlier 

by free vibration method (Chowdhury and Sarkar, 2003). However, error envelopes need to 

be assessed for each of these two data sets before the comparison. All eight flutter derivatives 

(H1* to H4*, A1* to A4*) were calculated using the obtained rational functions (Equation (17)) 
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and error envelopes of these flutter derivatives were obtained using perturbed rational 

functions that were extracted using modified phase lag angles,                  , with 

±7% error added to their obtained values. Similarly, error envelopes for flutter derivative 

data sets that were obtained by free vibration method (Chowdhury and Sarkar, 2003) were 

calculated by adding ±7% errors to the original phase lag angles,                   , 

obtained from the numerically generated displacement and force time histories without noise 

as in Section 4.1. Both sets of flutter derivatives and their corresponding error envelopes are 

plotted for comparison in Fig. 5. 

  

  

Figure 4. Experimentally obtained Rational Functions 
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Figure 5. Comparison of experimentally obtained flutter derivatives and those from 

experimental Rational Functions 
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the free vibration method need not be very accurate at high wind speeds when aerodynamic 

damping is positive and large. This difference could be also attributed to the fact that the 

free-vibration experiments were of two-DOF (vertical and torsional) while the forced 

vibration experiments stated here were two separate one-DOF motion experiments (vertical 

and torsional, respectively) for extraction of all eight flutter derivatives. It could be a 

combination of both reasons. The worst comparison is the A4*curves. The A4* extracted 

from RFA method here is almost twice of that free vibration method. This could be because 

of the difference in degrees of freedom or it could be because A4* is more sensitive to the 

noise in the experimental data as concluded by numerical tests (Table 1). However, in Fig. 5, 

all the 7% error bands for flutter derives from RFA (rational function approximation) data 

overlap with corresponding 7% error bands for free vibration flutter derivative data. 

Moreover, from error bands plotted in Fig. 5, it is seen that H4*, A4* and H2* are more 

sensitive to the phase difference than other flutter derivatives. This is similar to the results 

presented in Table 1. Actually, it has been shown by Sarkar et al. (2009) that, in forced 

vibration technique to extract flutter derivatives, slight error in estimation of the phase 

difference between aerodynamic loads and displacements obtained from experiments could 

get amplified in some of the flutter derivatives (A2* and H2* in Sarkar et al., 2009), which is 

similar to what is observed here in H4*, A4*, H2* and A2* plots in Fig. 5. 

To further validate the method, the flutter speed of the streamlined bridge deck section 

model was predicted using time domain simulation and Rational Function Coefficients 

extracted here. The flutter speed obtained here was compared with that obtained by Gan 

Chowdhury and Sarkar (2005) for the same model using Rational Functions (free vibration) 

and flutter derivatives (free vibration) and shown in Table 2. To investigate the effect of error 
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in phase difference on the prediction of flutter speed, the Rational Functions, obtained by 

adding ±2% errors to the exact value of                   , calculated from the 

numerically generated displacement and aerodynamic load time histories using Gan 

Chowdhury and Sarkar’s (2005) flutter derivative data, were also used to predict flutter speed 

of the bridge deck, and the results are listed in Table 2. 

Table 2. Comparison of flutter speeds of the streamlined bridge deck section model obtained 

by different set of parameters 

 Flutter 

Derivatives 

(Gan 

Chowdhury and 

Sarkar, 2005) 

Free vibration 

Rational 

Functions (Gan 

Chowdhury and 

Sarkar, 2005) 

Free vibration 

Rational 

Functions 

(Obtained in 

this paper) 

Forced vibration 

Rational Functions 

(Obtained by 

adding ±2% error to 

flutter derivative 

data) 

Forced vibration 

Flutter Speed,  

Ucr (m/s) 

32.4 31.8 34.5 32.9 (-2%), 32.8 

(+2%) 

It can be seen from the table that the comparison of predicted flutter speed is good, though 

some of the flutter derivatives, especially A4*, do not match very well with those extracted 

earlier, as shown in Fig. 5. Moreover, by ±2% error test, it is shown that slight error in phase 

difference,                   , could lead to a change in predicted flutter speed. 

 Overall, this algorithm demonstrated the feasibility of direct extraction of rational 

functions by the forced vibration method. 



www.manaraa.com

41 
 

5 CONCLUSION 

In this paper, a new method has been introduced to directly extract rational function 

coefficients or rational functions from forced vibration experiment. Through numerical tests, 

it has been shown that the algorithm is feasible for extraction of rational function coefficients 

and it is quite robust. The validation results of the obtained rational functions show that 

flutter derivatives extracted from this RFA method are generally in good agreement with 

those from earlier free vibration experimental results, given their sensitivity to noise in the 

signals. In the future, all eight flutter derivatives will be extracted simultaneously using a 

two-DOF forced-vibration system to eliminate the influence of single DOF (if any) on the 

final results. Moreover, to avoid the amplification of the error induced from phase difference 

identification in the algorithm as discussed previously, a new algorithm which is based on the 

system identification on the whole time histories rather than just the phase differences and 

amplitudes of time histories will be developed and validated by wind tunnel tests. 
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Figure Captions 

Figure 1. Cross section of the streamlined bridge deck model used in the experiment 

Figure 2. Bridge deck model and suspension system                  

Figure 3. Driving mechanism 

Figure 4. Experimentally obtained Rational Functions 

Figure 5. Comparison of experimentally obtained flutter derivatives and those from 

experimental Rational Functions 

 

Table Captions 

Table 1 Percentage errors for derivatives drawn from noisy data 

Table 2. Comparison of flutter speeds of the streamlined bridge deck section model obtained 

by different set of parameters 
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Abstract 

In prediction of self-excited forces and flutter instability of flexible structures, time 

domain method has distinct advantages. Rational Functions that are used to formulate self-

excited aerodynamic forces in time domain were indirectly extracted from experimentally 

obtained flutter derivatives in the past. Recently, an algorithm was published to directly 

extract the Rational Functions from wind tunnel section model tests in free vibration. To 

overcome the limitations of free vibration technique, a new algorithm that is developed for 

direct extraction of the Rational Functions from section model tests using a forced-vibration 
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technique is presented here. The new algorithm can be used to extract all the Rational 

Functions associated with one, two or three degree-of-freedom motion (vertical, lateral and 

torsional) of a section model. To validate the new algorithm, forced vibration wind tunnel 

tests in two degrees of freedom (vertical and torsional) were performed on a streamlined 

bridge deck section model with width-to-depth ratio B/D = 15:1 and also a bluff rectangular 

section model with B/D = 5:1. This is a significant improvement from other forced-vibration 

methods that require separate one-degree-of-freedom model tests which are dependent on 

phase angle difference between aerodynamic loads and displacements. 

1. Introduction 

In design of long-span bridges, it is important to identify whether there is aeroelastic 

instability (flutter) at wind speeds below the design wind speed. Scanlan and Tomko [1] 

developed a technique to carry out flutter analysis in frequency domain using experimentally 

obtained flutter derivatives. This laid the foundation for the development of various efficient 

methods to extract flutter derivatives from wind tunnel experiments, such as Scanlan [2] and 

Sarkar et al. [3]’s Modified Ibrahim Time Domain (MITD) method, Brownjohn and Jakobsen 

[4]’s Covariance Block Hankel Matrix (CBHM) method, and Gan Chowdhury and Sarkar 

[5]’s Iterative Least Squares (ILS) method, and many other methods. In recent years, time 

domain analysis (e.g., [6]-[10]) has been gaining popularity. In time domain analysis, the 

equations of motion are frequency independent so structural and aerodynamic nonlinearities 

can be incorporated. For time domain analysis, the self-excited forces acting on a flexible 

structure can be approximately represented by Rational Functions in Laplace domain. Roger 

[11] formulated the least squares Rational Function Approximation (LS-RFA) formulation, 
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and Karpel [12] developed the minimum state Rational Function Approximation (MS-RFA) 

formulation. Using these RFA formulations, one can obtain Rational Function Coefficients 

from flutter derivatives by approximation techniques. RFA formulation has been applied to 

bridge aerodynamics by several researchers including Xie [13], Xiang et al. [14], Wilde et al. 

[15] and Chen et al. [16]. However, this is an indirect way to obtain Rational Function 

Coefficients since flutter derivatives need to be obtained first from experiments that need to 

be repeated for several wind speeds. Thus, to make the process of extracting the Rational 

Function Coefficients more efficient, Gan Chowdhury and Sarkar [17] developed a new 

method based on free vibration of section models where both displacements and surface 

pressures of the model were simultaneously recorded and used. It is known that the free 

vibration method has some limitations compared to the forced vibration method because it is 

particularly unsuitable for higher wind speeds, large amplitudes of motion, turbulent flow, 

aerodynamically unstable cross sections and flow regimes where vortex-shedding dominates 

the excitation. This provided the motivation to develop a forced vibration experimental 

method to extract the Rational Functions. However, the current forced-vibration techniques 

for extraction of flutter derivatives [18,19] or Rational Function Coefficients [20] have some 

limitations. Firstly, these techniques are based on the phase difference between 

simultaneously obtained displacement and aerodynamic load time histories. In a recently 

concluded comparative and sensitivity study [21], it was shown that in a phase-difference-

dependent forced vibration technique to extract the four flutter derivatives based on a pure 

torsional motion system, the errors in   
  and    

  could be significant, since slight errors in 

the phase difference obtained from the experiment gets amplified in the formulation that 

defines   
  and    

 . Similar observation was made in the phase-difference-dependent 
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technique to extract Rational Function Coefficients [20]. Secondly, earlier forced vibration 

techniques were all based on one degree-of-freedom (DOF) motion (vertical or torsional), 

and aeroelastic coefficients (flutter derivatives or Rational Function Coefficients) associated 

with two degrees of freedom were obtained by combining results from two separate one DOF 

tests. Considering there is a physical difference between the aerodynamics of one DOF and 

two DOF motions, there might be errors introduced in the aeroelastic coefficients obtained by 

one DOF system because the actual aerodynamic interaction of a two DOF system may not 

be captured well. Thus, in this paper, a forced vibration method that does not use the phase 

difference is described to extract all the Rational Function Coefficients simultaneously from a 

two-DOF dynamic system for the first time. Moreover, the method developed in this paper is 

more efficient than earlier ones, since it requires data obtained at two wind speeds only to 

solve for the full set of Rational Function Coefficients.   

 

2. Formulation and Algorithm 

Using Minimum State Rational Function Approximation (MS-RFA) formulation ，

Karpel [12] derived the following Laplace domain formulation of aerodynamic self-excited 

forces: 
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where B= width of the bridge deck, U= mean wind velocity,      is nondimensional 

Laplace domain variable, K= Bω/U= reduced frequency of the vibration, where ω= 2πf= 

circular frequency of the vibration, ‘^’ denotes the Laplace transformation of the 

corresponding time domain function, Lse and Mse are self-excited lift and moment, 

respectively, h is vertical displacement and α is torsional displacement. Q is Rational 

Function matrix consisting of four Rational Functions and 0A , 1A ,   and λ are Rational 

Function Coefficients. 0A , 1A are stiffness matrix and damping matrix, respectively, and   is 

a lag matrix, all of order 2×2,   is a lag coefficient, and  ̂  [ ̂   ̂]  is the displacement 

vector. Multiplying both sides with p+λ, and applying inverse Laplace transformation on 

both sides of Equation (1), two time-domain equations for lift and moment can be obtained 

respectively as: 

2

1 2 3

1

2
se L se

U U B
L L U B q q q

B B U
    

    
       

    
                                                  (2) 

2 2

4 5 6

1

2
se M se

U U B
M M U B q q q

B B U
    

    
       

    
                                               (3) 

where    0 01 11 12
L LA A   

 
 ,            0 1 0 111 122 11 1211 12

L LA A F A A F       
 

, 

   1 13 11 12
A A  

 
,    0 04 21 22

M MA A   
 

, 

           0 1 0 121 225 21 2221 22
M MA A F A A F       

 
,    1 16 21 22

A A  
  .  

Equations (1-3) are slightly modified forms of those mentioned in [17]. Equations (2) and 

(3) can be rewritten in matrix form as: 
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Thus, 
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L L seA X L ,            M M seA X M                                   (6) 

It can be seen that all the Rational Function Coefficients that need to be identified are 

included in    and   . Therefore, the problem reduces to extracting    and    from a two-

DOF test. In a forced vibration experiment, displacement and aeroelastic force time histories 

are recorded, and their derivatives can be obtained by finite difference method applied to 

original time histories.  Thus, vectors  ,   ,    and    in the above equations can be 

formulated. Finally, vectors    and    can be solved by Least Squares method as: 

  
1

T T

L L L L LA b X X X


 ,      
1

T T

M M M M MA b X X X


                  (7) 

 

3. Experimental Set-Up 

3.1. Description of Wind Tunnel Used 

The experiments were performed in the Bill James Open-Return Wind Tunnel, which is 

located in the Wind Simulation and Testing Laboratory (WiST Lab) in the Department of 

Aerospace Engineering at Iowa State University. This wind tunnel has a test section of 

0.915m (3.0ft) width by 0.762m (2.5ft) height and its maximum wind velocity is 75 m/s (246 

ft/s).   

3.2. Model, Suspension System and Forced Vibration Mechanism 

To validate the method stated in this paper, experiments were carried out on both a 

streamlined model and a bluff model. The streamlined bridge deck section model was used in 

both one-DOF experiment and two-DOF experiment as shown in Figure 1 and Figure 2 (see 

also [22]). The streamlined model is composed of a shallow box girder section and two semi-

circular fairings at the edges. The length, chord length and thickness of the model are about 
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0.533m, 0.3m, and 0.02m, respectively. The bluff section model is rectangular with a width-

to-depth ratio (B/D) of 5:1, and the length, chord length and thickness of the model are about 

0.533m, 0.16m, and 0.032m, respectively (see also [21]). To reduce the edge effects, two 

plexiglass end plates were used on both models as seen in Figure 2.  

The three-DOF model suspension system used in this experiment is shown in Figure 2. 

This system, developed by Sarkar et al. [23], enables vertical, horizontal and torsional 

motions of the model. To realize forced sinusoidal motions of the section model with 

constant amplitude and frequency in the experiments, a driving mechanism (Figure 3) was 

used. The driving mechanism is placed above the test section. It consists of two motors, 

which are used to drive vertical and torsional motions of the model, respectively. The section 

model is driven by four aluminum rods which are connected with the driving mechanism, as 

seen in Figure 2. Thus, vertical, torsional, or combined vertical-torsional two-DOF sinusoidal 

motion of the section model can be generated using this driving mechanism. Moreover, by 

changing the rotating speed of two motors using two separate controllers, the two frequencies 

of model vibration in two degrees of freedom can be changed independently. 

3.3. Displacement Measurement 

The vertical displacement of the model was measured by measuring the elastic force in 

each of two springs which is connected to the model at one end and a strain gage force 

transducer at the other end. The torsional displacement was measured by measuring the 

torque at one end of the model shaft using a torque transducer which is mounted on the 

suspension system. LabVIEW was used for data acquisition, where the sampling rate was set 

at 625Hz. 
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3.4. Aeroelastic Force Measurement 

The algorithm stated in this paper requires time histories of aeroelastic forces acting on 

the model while it vibrates, in addition to the displacement time histories of the model. 

Therefore, surface pressures were measured on the model through a row of pressure taps 

located on the upper and lower surfaces of the model along the mid-plane for both 

streamlined and bluff models. In total, forty-two pressure taps for streamlined model and 

thirty-two pressure taps for bluff model were used in the test. The pressure taps are equally 

distributed on the top and bottom surfaces and they are denser on the upstream side than the 

downstream side of the models. Two 64-channel pressure modules (Scanivalve ZOC33/64 Px) 

were used to measure the pressure. The sampling rate for pressure measurement was 312.5Hz 

(half of displacement sampling rate) in the experiment. To synchronize the pressure data with 

the displacement data, the pressure transducers were set to work in external-trigger mode. 

LabVIEW (National Instrument) was used for displacement data acquisition and a separate 

program RAD (Scanivalve) was used to collect the pressure data. LabVIEW was 

programmed to output a digital signal when the displacement data acquisition started so that 

the pressure data acquisition system would get externally triggered to synchronously start the 

pressure data acquisition. The total sampling time was set as 10 seconds for all the tests. 

 

4. Numerical Tests 

4.1. Numerical Simulation and Noise Test 

Before conducting the wind tunnel tests, numerical tests were carried out first to confirm 

that the algorithm developed here works well in extracting Rational Function Coefficients of 

bridge decks with both streamlined and bluff cross sections. In the numerical tests, flutter 
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derivatives of a bluff rectangular (B/D=5:1) section model as extracted in [19] were used to 

generate lift and moment time histories at two wind speeds with given vertical and torsional 

displacement time histories as sinusoidal functions. The generated lift and moment were 

substituted in the algorithm to extract Rational Function Coefficients for the model, and the 

Rational Function matrix which contains four Rational Functions was computed using 

following formulation: 

   
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                (8) 

To assess the accuracy of the extracted Rational Functions, they were converted to flutter 

derivatives using following relationships: 

 * 2

1 11
/H imag Q  ,  * 2

4 11
/H real Q  ,   * 2

1 21
/A imag Q  ,  * 2

4 21
/A real Q      

 * 2

2 12
/H imag Q K ,  * 2

3 12
/H real Q K ,  * 2

2 22
/A imag Q K ,  * 2

3 22
/A real Q K     (9) 

The obtained flutter derivatives (referred RFA) were compared with the original ones 

used at the beginning of the simulation as shown in Figure 4. As can be seen in the plots, all 

eight flutter derivatives compare very well with the original ones, which proves that the 

Rational Function formulation with only one lag term as used here is accurate enough to 

approximate flutter derivatives of a bluff cross section model, even at high reduced velocities 

where some flutter derivatives could have complex trends. Moreover, this comparison shows 

that the algorithm developed here can work very well in extracting Rational Function 

Coefficients from forced vibration experimental data. To quantitatively assess the error in the 
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obtained Rational Function Coefficients, they were converted to flutter derivatives at exact 

reduced velocities where original experimental data in [19] were obtained and the error 

function as given by Equation (10) was calculated to evaluate the percentage error: 

       
8 2 2

0 0

1 1 1

100%
8

N N
j j j

i i i

j i i

X X X

err
  

 
 

   

  

                (10) 

where Xi
(j)

 is the j’th flutter derivative of the model calculated from Rational Functions and 

evaluated at the i’th reduced velocity point, and X(1)-X(8) correspond to H1*-H4* and A1*-

A4*, respectively, and Xi
0(j)

 is the corresponding original flutter derivative value given in 

[19], and N is the number of the reduced velocity points involved in the calculation. Using 

this error function, the percentage error was calculated as 8.14% which is acceptable 

considering data at only two wind velocities were used in the simulation to extract all the 

Rational Function Coefficients and the accuracy will certainly be improved by introducing 

data from more number of wind velocities. 

Some noise tests were performed to test the robustness of the algorithm. White noise with 

different standard deviations was added to the numerically generated displacement and 

corresponding load (lift, moment) time histories obtained by using the original flutter 

derivatives given in [19]. The standard deviation of the noise was chosen as certain 

percentage (2%, 5% and 10%) of time history amplitudes of displacements (h, α) and loads. 

The flutter derivatives from the obtained Rational Functions from the noisy data were 

compared with ones extracted from the numerically generated time histories without any 

noise, and the errors were computed using Equation (10), except the Xi
0(j)

 here is the flutter 

derivative obtained from noise-free time histories and the Xi
(j)

 is obtained from contaminated 
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ones. The results are listed in Table 1 which shows a percentage error below 10% even with a 

10% noise. Thus, the algorithm is reasonably robust. 

4.2. Effect of Time Step on Accuracy of the Algorithm 

In the algorithm, the displacement time histories need to be numerically differentiated 

twice to get acceleration time histories and also the first derivatives of the load time histories 

need to be evaluated using numerical method. Thus, the time step chosen in the finite 

difference method to calculate numerical derivatives could affect the accuracy of the 

extracted coefficients, especially when noise is present in the data. In current research, 

second order central difference method was used to evaluate derivatives. To investigate the 

consistency of the algorithm with different time steps chosen, numerical tests were carried 

out with larger time steps and also with 5% noise added to the displacement and load time 

histories.  

The time step in the original numerical test was set as 0.0032s which coincides with the 

experimental sampling period, and the ones used in current test were 0.005s and 0.01s which 

are about twice and three times of the original one. The coefficients extracted from 5% noise 

contaminated time histories and with two larger time steps were compared with ones 

extracted from clean time histories and with original time step. The errors were calculated 

using Equation (10) as in the noise tests. It turns out that the percentage error for time step of 

0.005s is 4.18% and that for time step of 0.01s is 6.54% which are both acceptable, although 

time steps are about two to three times the original time step of 0.0032s.  

4.3. Experimental Error Estimate and Resulted Error in the Coefficients 

In addition to electronic noise, errors could also be introduced into real experimental data 

either through equipment error or operational error from experimentalists. In this section, 
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numerical tests were performed to confirm the algorithm could still work well when both 

noise and errors are present in the data.  

For current algorithm, the input data are model displacements, h and α, aerodynamic 

loads, L and M, and the input parameters are wind velocity, U, and air density, ρ. In this 

numerical test, error was directly added to the specified parameters and the amplitudes for 

time history data.  

In the experiment, the model displacements were obtained by measuring spring forces as 

mentioned earlier under experimental set-up and thus errors could be introduced from the 

error in the force transducers and the calibration of transducers. Moreover, considering that 

angle measurement could have more error than length measurement, 3% error is given to 

vertical displacement, h, while 5% error is given to torsional displacement, α. The errors in 

the aerodynamic loads could come from the pressure transducers, the pressure tubing, and the 

error from numerical method used to integrate surface pressure into loads. Considering that 

integration of pressures to calculate moment could have more error than those from 

calculating lift, 3% error is assigned to lift, while 5% error is assigned to moment. The air 

density depends on the temperature and atmospheric pressure and does not change much, so 

only 1% error is assigned. Finally, the error in the wind velocity could come from the 

measurement of the dynamic pressure using Pitot tube and the error in the air density, thus 3% 

error is assigned. In the test, 5% noise and two combinations of errors, all positive or all 

negative, were given to simulate real experimental environment. The resulting flutter 

derivatives are plotted in Figure 4 (referred RFA_noise & errors (+/-)) to compare with the 

results from clean data and the original flutter derivative data. It can be seen in the plots that 

the errors in the extracted aeroelastic parameters increase with reduced velocity, however, 
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this occurs in a very small range. The errors were also quantified by error Equation (10), 

which are 5.90% for the negative error case and 6.88% for the positive error case. Thus, even 

with estimated errors and noise added in the data, the algorithm can still be used to accurately 

extract all the coefficients. 

 

5. Experimental Results and Discussion 

For the streamlined bridge deck section model, wind tunnel tests were performed at five 

wind speeds: 2.8m/s, 5.8m/s, 8.6m/s, 11.7m/s, 14.4m/s. The model was forced to move in 

two DOFs (vertical and torsional) at frequencies that were both around 2.5Hz. Data obtained 

at two wind velocities, 2.8m/s and 14.4m/s, were used in the algorithm to solve for all the 

Rational Function Coefficients. The results are given below: 

0

0.3273 6.2384

0.0970 1.3818
A

 
  

 
, 1
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F

 
  

 
,  

0.1843L  , 0.2239M 
 

For the bluff rectangular section model, experiments were carried out at wind speeds of 

2.9m/s, 5.9m/s, 8.7m/s, 11.6m/s, 14.6m/s. In these tests, the model was forced to vibrate in 

the same way and at same frequencies as what was set in the experiment of streamlined 

model.  Data obtained at wind speeds of 5.9m/s and 14.6m/s were used in the algorithm to 

extract all the Rational Function Coefficients for this bluff section model, which are given 

below: 

0
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, 1
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10.4613 5.7309
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F
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  

 
,  

1.2048L  , 0.7091M 
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To validate the obtained Rational Function Coefficients, they were converted to flutter 

derivatives using Equation (9) as what was done in the numerical tests. The flutter 

derivatives computed using Rational Functions for the streamlined model were compared 

with those directly extracted from a free vibration experiment carried out by Gan Chowdhury 

and Sarkar [17] on the same model and plotted in Figure 5. While the flutter derivatives 

obtained from Rational Functions for the bluff rectangular model were compared with those 

directly extracted from a forced vibration experiment by Matsumoto [19] on a model with the 

same shape and same aspect ratio, B/D=5. The flutter derivatives for the bluff model were 

plotted in Figure 6. 

It can be seen from Figure 5 that, all flutter derivatives for the streamlined section model 

that are converted from Rational Functions match with directly extracted ones very well, 

except for H2*. In an earlier research by Cao and Sarkar [20] where the same streamlined 

model was discussed, similar phenomenon was observed and some numerical tests have been 

performed there on the flutter derivatives of this model. The tests showed that, for this model, 

H2
*
 derivative is most sensitive to the error in the input time histories. Moreover, in that 

study, the H2* curve changed from the original shape to a shape similar to what was obtained 

here with just 7% error added to the time histories generated by the original flutter 

derivatives. 

The comparison of flutter derivatives for the bluff section model, as shown in Figure 6, is 

a little worse than that of the streamlined model, however the comparison of H1*, A4*, H3* 

and A3* is quite good, while the comparison of H4*, A1*, H2* and A2* is good for low 

reduced velocity region (less than 10) but slightly off at higher reduced velocities. 



www.manaraa.com

60 
 

By directly applying inverse Laplace transformation on both sides of Equation (1), the 

following formulations for self-excited lift and moment (aeroelastic forces) in time domain 

can be obtained:  

 

                                                                                                   (11) 

 

 

 

                                                    (12)

          

The above formulations can be used to predict self-excited forces and flutter speed in 

time domain. Aeroelastic self-excited forces can be calculated using Equations (11) and (12) 

at all wind speeds generated in the experiments using the model displacements h and α as 

recorded, their first derivatives as calculated by finite difference method and the Rational 

Function Coefficients as extracted. The numerically generated aerodynamic force time 

histories were compared with those obtained experimentally at wind speeds other than those 

used in the extraction procedure of Rational Function Coefficients to verify the accuracy of 

the method. For the streamlined model, comparisons of lift and moment time histories at 

wind speed of 11.7m/s are shown in Figure 7 and Figure 8, respectively. For the bluff model, 

comparisons of the lift and moment time histories at wind speed of 11.6m/s are shown in 

Figure 9 and Figure 10, respectively. As can be observed in the plots for the streamlined 

model, both lift and moment time histories matched very well, while the matching is slightly 

worse for the bluff section model. In the plots for the bluff section model, the amplitudes of 
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predicted lift and moment time histories (by Rational Functions) are slightly smaller than 

those of experimentally measured ones, especially for the lift. To better compare these time 

histories, cross-correlation coefficient, ρxy, and percentage peak error, errpeak, defined as 

below were calculated and listed in Table 2. 

1
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1 n

i i

i

x y

x y
n
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 
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

                                     (13) 
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where x is experimentally obtained time history, y is simulated time history,  ̂ (         

are peak values of time history x, and  ̂ (         are peak values of time history y. From 

Table 2, it is shown that cross-correlation coefficients for all the time histories are close to 1 

which means the comparisons of the whole time histories are good, while the coefficients for 

lift time histories are lower than those for moment time histories, and the coefficients for the 

bluff section model are lower than those for the streamlined section model. The percentage 

peak errors for streamlined model time histories are very low, while those for bluff model 

time histories are much larger, especially for the moment time history. This shows the similar 

trend as shown in the cross-correlation coefficient results that the comparisons for the 

streamlined model time histories are better than those for the bluff model time histories. 

Actually, a similar trend can also be found in earlier flutter derivative studies (e.g., [21]). 

 For further validation, the flutter speed of the streamlined section model was predicted 

using time domain simulation and Rational Function Coefficients obtained in this experiment. 
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In flutter speed prediction, after substituting Rational Functions into right hand side load term, 

the time domain equations of motion were solved at each time step with given wind speeds, 

and the wind speed was increased continuously until a diverging solution was obtained. The 

flutter speed obtained here was compared with that obtained by Gan Chowdhury and Sarkar 

[17] on the same model using Rational Functions (free vibration) and flutter derivatives and 

shown in Table 3. Moreover, to investigate the difference between Rational Function 

Coefficients extracted from one-DOF and two-DOF forced vibration tests, the flutter speed 

obtained earlier by Cao and Sarkar [20] from two separate one-DOF forced vibration tests 

was also included in Table 3. As seen in this table, the comparison is good. Similarly, the 

flutter speed of the bluff section model was also predicted using Rational Function 

Coefficients obtained in this paper, and compared with that predicted using flutter derivatives 

obtained by Matsumoto [19], as shown in Table 4. It can be seen that the flutter speed 

comparison for bluff section model is good, though slightly worse than the streamlined 

model case. 

 

5. Conclusion 

In this paper, a new algorithm has been developed for direct extraction of all the Rational 

Function Coefficients for one, two or three-DOF forced vibration wind tunnel tests on a 

section model. The algorithm does not use phase angle difference between displacement and 

aeroelastic force time histories in the extraction procedure like in previous methods available 

in the literature. Thus, the error introduced in all the parameters from error in identification 

of one parameter, i.e. phase angle difference, is eliminated in this algorithm. Rather this new 

algorithm uses all the recorded data points to identify the unknown parameters in a least 



www.manaraa.com

63 
 

square sense that minimizes the error originating from the noisy signals. The proposed 

algorithm is more efficient than others since it requires data collected at two wind speeds 

only to extract the full set of Rational Function Coefficients for a two-DOF system. As part 

of the validation process, the Rational Functions obtained in this paper were converted into 

flutter derivatives and were compared with directly extracted ones obtained in earlier 

experiments by other scholars, for both streamlined and bluff section models. The 

comparison is well, especially for the streamlined model case. Moreover, it was shown that 

the Rational Function Coefficients obtained using this algorithm can be used to accurately 

predict the self-excited forces acting on a section model at a given wind speed, for both a 

streamlined cross section and a bluff cross section.  Further, the flutter speed of the 

streamlined cross section bridge deck model was predicted using Rational Function 

Coefficients obtained here and has been shown to match with earlier results. In the future, to 

validate the application of Rational Functions to predict the response of a bridge deck in a 

non-stationary wind environment, free vibration tests in a gusty wind (ramp down function 

applied to mean speed) was performed on a streamlined section model with the same 

geometry as the model used in this paper but with a larger scale. The results of this validation 

are quite favorable and will be presented separately. 
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Notations 

The following symbols were used in this paper: The following symbols were used in this paper: 
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Table 1. Percentage errors shown in noise tests 

 2% noise 5% noise 10% noise 

err (%) 

Eqn. 10 

1.74 3.92 9.39 

 

Table 2. Parameters for time history comparisons 

 ρxy errpeak 

Lift (streamlined model) 0.8498 1.55% 

Moment (streamlined model) 0.8815 0.40% 

Lift (bluff model) 0.8783 6.96% 

Moment (bluff model) 0.8141 38.22% 

 

Table 3. Comparison of flutter speeds of the streamlined section model obtained by different 

set of parameters 

 

Flutter 

Derivatives 

(Free 

vibration, [7]) 

Rational 

Functions 

(Free 

vibration, [7]) 

Rational 

Functions 

(Forced 

vibration, 

1DOF, [3]) 

Rational 

Functions 

(Forced 

vibration, 

2DOF, current) 

Flutter speed, 

    Ucr (m/s) 

32.4 31.8 34.5 32.4 
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Table 4. Comparison of flutter speeds of the bluff section model obtained by different set of 

parameters 

 

Flutter Derivatives (Forced 

vibration, 1DOF, [11]) 

Rational Functions (Forced 

vibration, 2DOF, current) 

Flutter speed, 

Ucr (m/s) 

19.5 21.7 
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Figure 1. Cross section of models used in the experiments: (a) streamlined and (b) bluff 
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Figure 2. Model and suspension system          
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Figure 3. Driving mechanism 
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Figure 4. Numerically extracted Ration Function Coefficients from clean time histories and 

the time histories polluted by noises and with errors added 
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Figure 5. Comparison of experimentally obtained flutter derivatives [17] and those from 

Rational Functions for the streamlined section model 
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Figure 6. Comparison of experimentally obtained flutter derivatives [19] and those from 

Rational Functions for the bluff section model 
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Figure 7. Lift time histories for the streamlined section model at velocity of 11.7m/s 
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Figure 8. Moment time histories for the streamlined section model at velocity of 11.7m/s 
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Figure 9. Lift time histories for the bluff section model at velocity of 11.6m/s 
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Figure 10. Moment time histories for the bluff section model at velocity of 11.6m/s 
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CHAPTER 4. TIME-DOMAIN AEROELASTIC LOADS AND 

RESPONSE OF FLEXIBLE BRIDGES IN GUSTY WIND: 

PREDICTION AND EXPERIMENTAL VALIDATION 
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Abstract: Flexible bridges could experience vortex-induced and buffeting excitations below 

their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical 

wind speed. For regular straight-line winds which are stationary or weakly-stationary, 

frequency domain formulation is routinely used for flutter analysis of bridges. However, 

when evaluating performance of flexible bridges subjected to gusty winds that are transient 

in nature, the frequency-domain formulation is not applicable and hence time-domain 

methods should be used. In this paper, time domain formulations were used to predict 

aeroelastic loads acting on a rigid bridge deck section model subject to stationary and gusty 

straight-line winds based on the knowledge of upstream wind speed and model displacement 

measurements. In this procedure, Rational Functions and indicial functions are used to 

formulate self-excited forces and buffeting forces, respectively. These functions used here 

were recently obtained from wind tunnel tests performed on a streamlined bridge deck 

section model with a smaller geometric scale. The results of the validation using a larger 

section model of this bridge deck subject to a ramp-type gust are presented here. 

CE Database keywords: long-span bridges, time-domain formulation, rational functions, 

buffeting indicial functions, aeroelastic load prediction, gusty wind 

Introduction 

In traditional method of flutter analysis of flexible structures subjected to regular straight-line 

winds, self-excited forces were formulated using Scanlan (1971)’s flutter derivative 

formulation. This is a mixed-domain (frequency domain and time domain) formulation, since 

flutter derivatives used in the formulation are functions of reduced frequencies. Thus, this 
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formulation for self-excited forces cannot be substituted in equations of motion to 

continuously solve for response time histories of flexible structures below flutter speed or 

capture its transient response in gusty winds. To incorporate the nonstationarity of wind 

environment and nonlinearity of structural vibration in the analysis, time domain 

formulations for aerodynamic forces (Lin and Ariaratnam, 1980; Scanlan, 1984; Tsiatas and 

Sarkar, 1988; Scanlan, 1993; Li and Lin, 1995; Scanlan, 2000; Chen et al., 2000; Chen and 

Kareem, 2002; Salvatori and Borri, 2007; Zhang et al., 2011) were proposed and investigated. 

Moreover, these time domain formulations are also suitable for finite element modeling, 

feedback-dependent structural control mechanism and fatigue-life prediction. However, 

previous research on use of time domain analysis method in bridge aerodynamics is limited 

to numerical simulations without any experimental validation. In the current study, validation 

tests are performed on a section model in a wind tunnel to verify the aerodynamic time-

domain load models in stationary and gusty winds. Apart from increasing confidence levels 

of the time-domain aerodynamic load model presented here, the experimental procedure in 

this research can be used for studying problems related to non-stationary winds such as large 

amplitude motions or buffeting response in boundary-layer wind. In time domain, self-

excited forces can be directly formulated in indicial functions (Tsiatas and Sarkar, 1988; 

Caracoglia and Jones, 2003), or they can be first written in Rational Functions (Roger, 1977; 

Karpel, 1982) in Laplace domain, and then be transformed into time domain. Using 

corresponding relationship between Laplace domain and frequency domain formulations of 

these self-excited forces, Rational Function Coefficients can be indirectly extracted from 

experimentally obtained flutter derivatives. However, to accelerate the process of extraction 

of Rational Function Coefficients, methods based on free vibration experiment (Chowdhury 
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and Sarkar, 2005) and forced vibration experiment (Cao and Sarkar, 2010) were developed. 

These methods require experimental data recorded at much fewer wind velocities compared 

to those used for extracting flutter derivatives. The Rational Function Coefficients used in 

this paper were obtained by a forced vibration method described in Cao and Sarkar (2010). 

The fluctuating buffeting forces can be modeled using aerodynamic admittance functions 

(Simiu and Scanlan, 1996; Scanlan and Jones, 1999) in frequency domain and buffeting 

indicial aerodynamic functions in time domain.  Chang et al. (2010) used the relationship 

between the two formulations for buffeting forces and devised a procedure to identify the 

buffeting indicial functions of a structural section. This procedure was used here to identify 

the buffeting indicial functions for the streamlined bridge deck. In the current paper, these 

time domain functions for self-excited and buffeting forces were used to predict the total 

aeroelastic loads acting on a streamlined bridge deck section model with an aspect ratio (B/D) 

of 15:1 that was subjected to both stationary and ramp-shaped gusty winds, and compared 

with wind tunnel measurements for validation of these time-domain formulations of 

aeroelastic loads. 

Time Domain Equations for Aeroelastic Loads 

In most analysis, motion in two degrees of freedom (vertical or across-wind and torsional) 

are considered sufficient but occasionally all three degrees of freedom including the lateral or 

along-wind are necessary for accurate analysis. For flexible long span bridges, vertical-

torsional modes have routinely been used, except for cable-stayed bridges, where lateral 

mode needs to be included in the analysis. In this paper, only self-excited and buffeting loads 
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were included in the total aeroelastic load terms that appear on the right-hand side of the two-

degree-of-freedom (vertical-torsional) equations of motion written as: 

2( 2 )h h h ae b sem h h h L L L      
                                                          

(1) 

2( 2 ) ae b seI M M M                                                       (2) 

where m= mass per unit length; I= mass moment of inertia about the centroidal axis per unit 

length; h(t,x)= vertical displacement; α(t,x)= torsional displacement; hh  ,  natural 

frequency and damping ratio of vibration for dominant vertical or cross-wind mode; 

  ,  natural frequency and damping ratio of vibration for dominant torsional mode; (
 ∙ 
)= 

d( )/dt; (
 ∙∙ 

)= d
2
( )/dt

2
; Lae= total aeroelastic lift; Mae= total aeroelastic moment; Lb= buffeting 

lift component; Lse= self-excited lift component; Mb= buffeting torsional moment; Mse= self-

excited torsional moment. 

Equations for Self-Excited Aeroelastic Loads 

Self-excited lift and moment for a bridge-deck section in time domain, as obtained by 

transforming Rational Function formulation from Laplace domain, can be written as: 
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where ρ= air density, B= width of the bridge deck, U= mean wind velocity,       are 

stiffness matrix and damping matrix, respectively, and   is a lag matrix, all of order 2×2, 

  and    are lag coefficients. The elements of         matrices and   ,    are known as 

Rational Function Coefficients.  

Equations for Buffeting Loads 

In time domain, buffeting lift and moment can be formulated using buffeting indicial 

functions in terms of non-dimensional time, s = Ut/B, as follows: 

    



s
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b dsw
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(6) 

where )(' swL  and )(' swM  = derivatives of buffeting indicial functions, )(swL  and )(swM , 

respectively, CL = lift coefficient, α = angle of attack, CM’ = dCM/dα, CM = moment 

coefficient, w(s) = turbulent velocity in vertical direction. Since the section model used in the 

current work is symmetric, the lift and moment coefficients CL and CM are both zero at angle 

of attack α=0. Thus, as can be seen in Equations (5) and (6), the along-wind turbulence (u) 

term that enter through CL and CM drops out.  

The functions, )(' swL  and )(' swM , expressed in non-dimensional time, s = Ut/B, take the 

following form: 

2 4'

1 3

A s A s

xx A e A e                                      (7) 

where A1 to A4 are constants.  
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Rational and Indicial Functions for a Streamlined Bridge Deck 

A streamlined bridge deck section that is a thin rectangular section with semi-circular 

fairings at its both edges with an aspect ratio (B/D, B =total width and D=depth) of 15:1 was 

used in the experiments described in this paper. A section model (B=300 mm, D=20 mm, 

L=450 mm) of the bridge section with end plates was placed in an open-return wind tunnel, 

Bill James Wind Tunnel (0.915m width by 0.762m height), for the extraction of aeroelastic 

load functions such as Rational Function Coefficients or Rational Functions and the buffeting 

indicial functions with two separate sets of experiments.  The Rational Function Coefficients, 

as extracted using the forced-vibration method described in Cao and Sarkar (2010), are given 

below: 

2239.0 ,1843.0 ,
1682.02689.0

3397.19484.0
 ,

3819.08510.0

4947.17549.3
 ,

3818.10970.0

2384.63273.0
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

















 FAA  

The buffeting indicial functions were extracted using the method described in Chang et al. 

(2010). The derivatives of these functions, )(' swL  and ,)(' swM
 
are given below for the given 

bridge deck section: 

' 0.0058 0.0833( ) 0.0081 0.0392s s

wL s e e   
 

' 0.0733 0.0051( ) 0.0347 0.0072s s

wM s e e    
 

In these tests, aerodynamic static force coefficients were also measured as follows: 

CD = 0.037, CL’ = 4.639, CM’ = 1.085 
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Experimental Set-Up 

The experiments described here were performed with a larger model in a larger wind tunnel 

compared to the previous set of experiments used for extraction of Rational Function 

Coefficients. There were two reasons - the first one being the larger wind tunnel’s capability 

for generation of atmospheric boundary layer associated with a particular terrain and variety 

of gusts that were used in the study and the second one was to prove that the aeroelastic 

parameters that were identified in a different setting can be used to predict loads on the 

bridge model of a larger scale. 

Wind Tunnel and Gust Generation Mechanism 

The experiments described here were performed in the Aerodynamic/Atmospheric Boundary 

Layer (AABL) wind tunnel (Figure 1), which is located in the Wind Simulation and Testing 

Laboratory (WiST Lab) in the Department of Aerospace Engineering at Iowa State 

University. This wind tunnel has an aerodynamic test section of 2.44m (8.0ft) width by 

1.83m (6.0ft) height and an atmospheric boundary layer test section of 2.44m (8.0ft) width by 

2.21m (7.25ft) height, and a designed maximum wind speed of 53m/s (173.9ft/s) in the aero 

section. An active gust generation mechanism was developed and implemented by Haan and 

Sarkar (2006) on this wind tunnel. The basic design of this mechanism is a bypass duct added 

to the wind tunnel fan section, as shown in Figures 1 and 2.  

The flow could be diverted to and from the main duct to the bypass duct, so that flow 

velocity in the test section can be increased or reduced in a short duration. The motion of 

damper vanes inside the bypass duct can be controlled and programed by a computer, 
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through which mean velocity time histories of gusts can be prescribed. Several types of gust 

can be generated by this mechanism, such as ramp-up or ramp-down gust, triangular-shaped 

gust, trapezoidal-shaped gust and sinusoidal-wave-shaped gust. In this paper, results 

corresponding to a ramp-down gust are presented. 

Model and Suspension System  

The section model used in the experiment is shown in Figure 3. The model, as described 

earlier, is composed of a shallow box girder section and two semi-circular fairings at its 

edges. The length L, chord length B and thickness D of the model are about 1.83m, 0.74m, 

and 0.051m, respectively, making this model about 2.5 times larger than the section model 

described earlier that was used for the extraction of the aeroelastic load functions. To reduce 

the edge effects, two end plates were used as seen in Figure 3. The two-DOF model 

suspension system used in this experiment is shown in Figures 3. The suspension system 

enables vertical and torsional motions of the model using twelve linear helical springs, six at 

each end of the model, while horizontal motion is restricted by two leaf springs attached at 

both ends of the model shaft, as shown in Figure 3. Before running wind tunnel tests on the 

model, free vibration tests without wind were performed to identify the stiffness coefficients 

of the entire vibration system (with the model mounted) for the two degrees of freedom 

(vertical h and torsional ) as Kh = 2233.5 N/m and Kα = 103.72 Nm/rad, respectively. The 

natural frequencies of the two degree-of-freedom system at zero wind were measured as fh = 

1.76Hz, and fα = 1.78Hz, and the damping ratios of the system at zero wind were measured 

as ζh = 0.25% and ζα = 0.83%, along the vertical and torsional degrees of freedom, 

respectively. The mass and mass moment of inertia of the entire dynamic system were M = 
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18.3kg, and I = 0.8275kgm
2
, respectively. To induce vibration of the model, two C-clamps 

were added as lumped masses, one on each side of the model span at a distance of 0.25m 

downstream of the model shaft, as can be seen in Figure 3. The total mass of the two C-

clamps was 1.57kg. 

Wind Velocity Measurement 

In this experiment, wind velocity time histories were measured by a Cobra Probe (Turbulent 

Flow Instrumentation) placed right in front of the bridge deck model, as shown in Figure 3. 

The sampling rate for wind velocity was set at 156 Hz. 

Model Displacement Measurement 

The vertical or torsional displacement of the model was measured by measuring the elastic 

force in each of the four helical springs which is connected to the model at one end and a 

strain gage force transducer at the other end, as can be seen in Figure 3. The force 

transducers were mounted at two opposite corner positions at both ends of the model span to 

eliminate the spurious modes of vibration of the model such as rotation about its centerline. 

LabView program was used for data acquisition, where the sampling rate was set at 125Hz.  

Aerodynamic Pressure Measurement 

Aerodynamic pressures were also recorded in the experiment to assess aeroelastic loads for 

comparison with those obtained from numerical simulation. Surface pressures were measured 

on the model including the fairings through a row of pressure taps located on the upper and 

lower surfaces of the model along the mid-plane. In total, forty-two pressure taps were used 

in this test, equally distributed on both the surfaces. The pressure taps are denser on the 
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upstream side than the downstream side of the model. Two 64-channel pressure modules 

(Scanivalve ZOC33/64 Px) were used to measure the pressure. To minimize the error 

introduced from pressure tubing, pressure modules were placed inside the model, so that 

tubing length can be significantly shortened, as shown in Figure 4. A separate program (RAD) 

collected the pressure data. The sampling rate for pressure measurement was 62.5Hz (half of 

displacement sampling rate for convenience of synchronization) in the experiment.  

Data Synchronization 

To synchronize the displacement data with the pressure data and the wind velocity data, both 

the pressure transducers and the Cobra Probe were set to work in an external-trigger mode. 

The LabView program that was used for displacement data acquisition was programmed to 

output a digital signal when the displacement data acquisition started, so that the pressure 

data acquisition system and the Cobra Probe data acquisition system would receive this 

external signal and get triggered to start the data acquisition.  

Results and Discussion 

In the wind tunnel tests, the model was given initial displacement to start the vibration, and 

both the model displacement and pressures or aeroelastic loads were recorded during the 

vibration. Using model displacement time histories (h(t) and α(t)) measured from wind tunnel 

tests, their first derivatives   ̇(        ̇(   were calculated by finite difference method. After 

obtaining all these time histories, self-excited lift and moment were calculated from 

Equations (3) and (4) at each time step. Similarly, using experimentally measured turbulent 

velocity time history in vertical direction, w(t), buffeting lift and moment were calculated 
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from Equations (5) and (6) at all time steps. Rational Function Coefficients and Indicial 

Functions of the bridge deck identified earlier were used in these calculations. The total 

aeroelastic loads acting on the model were calculated as the sum of self-excited and buffeting 

loads. To evaluate this load time history prediction procedure, both stationary wind and gusty 

wind cases were investigated. 

Load Prediction for Stationary Wind Case 

For stationary wind case, the aeroelastic loads were predicted and measured at a mean wind 

velocity of about 6.2m/s, as can be seen in velocity time history shown in Figure 5(a). The 

standard deviation of vertical turbulence component of the velocity (w(t)) was 0.017m/s 

which gives a turbulence intensity of 0.27%. Thus, this flow condition can be classified as 

smooth flow which reduces the effects of the buffeting loads. The displacement time histories 

which were measured from experiment and used in the prediction of aeroelastic loads are 

plotted in Figures 5(b) and 5(c). The numerically predicted lift and moment coefficients as 

computed using Equations (8) and (9) are shown and compared with experimentally 

measured ones in Figures 5(d) and (e).  

BtU

tL
tCl

)(2/1

)(
)(

2
                                             (8) 

22 )(2/1

)(
)(

BtU

tM
tCm


                      (9) 

where L(t) and M(t) are aeroelastic lift and moment per unit length obtained numerically or 

experimentally, and U(t) is instantaneous wind speed  in horizontal direction.  
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As can be observed from the lift and moment comparison plots, the lift coefficient time 

history predicted by the procedure described here matches well with experimental results, for 

both amplitude and phase angle. While the amplitude of moment coefficient time history was 

predicted well, the predicted phase angle was slightly different from that of the measurement. 

The discrepancy of phase angle for moment coefficient between prediction and measurement 

might be due to the error in the Rational Function Coefficients that are used here for the 

prediction of aerodynamic damping in the torsional direction (i.e, A2
*
 in flutter derivative 

formulation). It is known that the phase shift between torsional motion and aerodynamic 

moment is attributed to aerodynamic torsional damping so an error in this term would 

manifest itself in the phase shift. In a separate study, when comparing the eight flutter 

derivatives for this cross section obtained by free vibration method for vertical-torsional 

motion (Chowdhury and Sarkar, 2005) with those calculated using the Rational Function 

Coefficients used here, it was observed that the match between the two sets was generally 

good for all the direct flutter derivatives over their full range of reduced velocities with the 

exception of A2* which had more error at low reduced velocities. For example, it is noted 

that A2* had a large error (33%) at reduced velocity of 4.7 (U = 6.2 m/s) at which the current 

model was tested.  

Load Prediction for Ramp-Down Gusty Wind Case 

To ultimately validate the feasibility of the time domain formulations in non-stationary wind 

environment, the wind tunnel tests were carried out in a ramp-down gusty wind, whose 

horizontal velocity time history is shown in Figure 6(a). The corresponding displacement and 

force coefficient time histories are plotted in Figures 6(b) to 6(e). 
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For this gusty wind case, it is observed in Figures 6(d) and 6(e) that the amplitudes of load 

coefficients are predicted well in the first half of the time intervals and are over-predicted in 

the later time periods, for both lift and moment coefficient time histories. Moreover, similar 

to the stationary wind case, the prediction of moment coefficient time history has slight error 

in phase angle, and is slightly worse than the prediction of lift coefficient time history.  

Given the error in the aeroelastic load functions (Rational and Indicial) as extracted from a 

separate set of experiments on a smaller section model, the errors in the measurements of 

displacements on the larger section model that were used for the numerical prediction of 

aeroelastic loads, combined with errors associated with differentiation and integration in the 

numerical procedure used here, and error in the pressure measurements that were used to 

calculate the aeroelastic lift and moment, the comparison between the predicted and 

measured time histories of the aeroelastic loads seems quite encouraging. 

Conclusion 

In this paper, time domain method was used to predict aeroelastic loads on a streamlined 

bridge section model while it is vibrating in stationary and gusty straight-line winds. The 

Rational Functions and buffeting indicial functions were used to calculate self-excited forces 

and buffeting forces, respectively. The numerically simulated loads were compared with 

experimental measurements for both stationary wind case and gusty wind case.  It was 

demonstrated here that the prediction of aeroelastic loads using the time-domain formulation 

can be made. The comparison between predictions and measurements was quite well in the 

stationary wind case, while a similar comparison in the gusty wind case was not as good but 

reasonable within the error bounds expected. The slightly worse performance of time domain 
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method in gusty wind case is explainable since all the formulations used in this paper were 

originally proposed for stationary wind and the aeroelastic parameters used here were also 

extracted in stationary wind. However, a better performance is expected if the time domain 

formulation used here is revised to include the effect of time-varying mean wind as in the 

gusty wind cases which could be investigated in future studies. In future, the performance of 

this time-domain load prediction method for winds that are non-uniform with height such as 

boundary-layer wind, more turbulent, and not straight-line but highly non-stationary, such as 

microbursts or tornadoes, will be investigated.  
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Figure 1. Diagram of AABL Wind and Gust Tunnel at Iowa State University. The bypass 

duct for gust generator is shown in upper left corner and the aerodynamic test section is 

shown in the lower right corner. (Haan and Sarkar, 2006) 
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Figure 2. Diagram of the bypass duct surrounding the portion of the main duct containing the 

fan. The upper diagram is a 3D illustration of the bypass ducts surrounding the fan section. 

The lower diagram is a top view of the system showing the fan and its relation to the bypass 

ducts (Haan and Sarkar, 2006). 
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(a) View from upstream    (b) View from side 

Figure 3. Section model and experimental set-up  
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Figure 4. Pressure modules (Scanivalve ZOC 33/64 Px) mounted inside the model  

Pressure Modules 
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Figure 5. (a) Horizontal velocity time history, (b) Vertical displacement time history, (c) 

Torsional displacement time history, (d) Aeroelastic lift coefficient comparison, (e) 

Aeroelastic moment coefficient comparison, for stationary wind case 
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Figure 6. (a) Horizontal velocity time history, (b) Vertical displacement time history, (c) 

Torsional displacement time history, (d) Aeroelastic lift coefficient comparison, (e) 

Aeroelastic moment coefficient comparison, for gusty wind case 
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CHAPTER 5. DYNAMIC WIND LOADS ON BRIDGE DECKS 

IN TURBULENT WIND ENVIRONMENT 
 

Bochao Cao
2
 and Partha P. Sarkar

2
  

 

Abstract: In time domain analysis of structures subjected to wind loads, Rational Function 

formulation and buffeting indicial formulation can be used to predict self-excited and 

buffeting wind loads acting on the structure, respectively. In an earlier study, it has already 

been shown that these formulations can work very well in predicting wind loads for smooth 

wind cases through section model vibration tests in a wind tunnel. In current research, to 

validate time domain formulations in turbulent wind environment, wind tunnel tests are 

performed with turbulence generated by two different boundary layer set-ups in the up-

stream of the section model. To incorporate gust effects simultaneously on the prediction of 

wind loads, different types of gusts (ramp-up, ramp-down and bump-shaped) are also 

generated in the tests. 

Introduction 

Flexible structures like long-span bridges or tall buildings are vulnerable to wind loads and 

could become unstable at certain wind speed (flutter speed). Based on the flutter derivative 

formulation derived by Scanlan and Tomko (1971), frequency domain method has been 

proposed to predict flutter speeds of structures. In the following decades, many methods 

(Huston, 1988, Scanlan and Jones, 1990, Sarkar et al., 1994, Gu et al., 2000, Brownjohn and 

Jakobsen, 2001, Zhu et al., 2002, Gan Chowdhury and Sarkar, 2004, Chen et al., 2008, Chen 
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and Kareem, 2008, Batoli et al., 2009, Ding et al., 2010) have been developed to extract 

flutter derivative from either free vibration or forced vibration wind tunnel tests. However, 

frequency domain methods cannot be applied to the analysis of interaction between flexible 

structures and non-stationary winds, especially for extreme winds such as tornadoes and 

microbursts, which frequently cause loss of human lives and serious economic damages 

every year. Thus, to enable time domain structural analysis which can be used to investigate 

problems with non-stationary winds or nonlinear structures, time domain formulations have 

been developed to evaluate aeroelastic wind loads. To express self-excited wind loads in time 

domain, indicial function formulation (Tsiatas and Sarkar, 1988; Caracoglia and Jones, 2003) 

or the formulation as transformed from Laplace domain Rational Function formulation 

(Roger, 1977; Karpel, 1982) were derived. Methods have been developed to identify indicial 

functions or Rational Functions through free vibration (Gan Chowdhury and Sarkar, 2005) or 

forced vibration (Cao and Sarkar, 2010) techniques. While for the calculation of buffeting 

wind loads, frequency domain admittance functions (Davenport, 1962) and equivalent time 

domain buffeting indicial functions are widely used. The admittance functions can be 

extracted using a section model where the aerodynamic loads on the model are measured 

when fluctuating wind at a distinct frequency is generated using two parallel plates 

oscillating sinusoidally in front of the model (Chang et al., 2010) and tests repeated at several 

reduced frequencies. Recently, Sarkar and Cao (2011) have performed a validation study for 

time domain formulations, in which self-excited and buffeting wind loads were predicted 

using Rational Functions and buffeting indicial functions, respectively, and compared with 

experimentally measured wind loads in stationary and ramp-down gusty winds without 

turbulence, and the results from this study are quite encouraging. However, turbulence in the 
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wind flow could be a significant factor that affects the aeroelastic parameters and prediction 

of aeroelastic wind loads and structural responses (Scanlan and Lin, 1978, Scanlan, 1988, 

Diana et al., 1993, Scanlan, 1997, Gu et al., 2001, Batroli and Righi, 2006). In the current 

validation study, to test time domain formulations in turbulent winds, the section model is 

placed in the atmospheric boundary layer section of the wind tunnel with two types of 

boundary layers generated in the upstream of the model using spires, chains and roughness 

blocks. Besides the stationary wind, ramp-up, ramp-down and bump-shaped gusts are also 

tested in this study. 

Time domain equations for dynamic wind loads 

In most analysis, without considering vortex shedding effect, wind loads acting on a flexible 

bridge can be represented in two parts: self-excited loads and buffeting loads.  

Time domain formulation for self-excited loads, as transformed from Laplace domain 

Rational Function formulation, can be written as:  
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where ρ= air density, B= width of the bridge deck, U= mean wind velocity,       are 

stiffness matrix and damping matrix, respectively, and   is a lag matrix, all of order 2×2, 

  and    are lag coefficients. The elements of         matrices and   ,    are known as 

Rational Function Coefficients.  

The buffeting wind loads can be formulated using buffeting indicial functions in time domain, 

as follows: 
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where s = Ut/B = non-dimensional time,
 

)(' swL  and )(' swM  = derivatives of buffeting 

indicial functions, )(swL  and )(swM , respectively, CL = lift coefficient, α = angle of attack, 

CM’ = dCM/dα, CM = moment coefficient, w(s) = turbulent velocity in vertical direction. 

Since the section model used in the current work is symmetric, the lift and moment 

coefficients CL and CM are both zero at angle of attack α=0. Thus, as can be seen in 

Equations (3) and (4), the along-wind turbulence (u) term that enters through CL and CM does 

not appear. 

The derivatives of given buffeting indicial functions, )(' swL  and )(' swM , are functions of 

non-dimensional time, s, as below: 
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where A1 to A4 are constants, which can be extracted from wind tunnel buffeting tests.  

A streamlined bridge deck section that is a thin rectangular section with semi-circular 

fairings at its both edges with an aspect ratio (B/D, B = total width and D = depth) of 

15:1(B=300mm, D=20mm) was used in the experiments described in this paper. To extract 

aeroelastic parameters used in Equation (1)-(4) for this bridge deck section, two separate tests 

were carried out on a section model with end plates equipped in Bill James Wind Tunnel 

(0.915m width by 0.762m height). Forced-vibration method described in Cao and Sarkar 

(2010) was used to extract the Rational Function Coefficients, while method described in 

Chang et al. (2010) was used to extract the buffeting indicial functions. The parameters were 

extracted as below: 
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The static force and moment coefficients and their derivatives that are used in the buffeting 

load formulation are also measured in smooth wind tests as follows: 

CL =0, CM =0, CD = 0.037, CL’ = 4.639, CM’ = 1.085 
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Experimental Set-Up 

Wind Tunnel and Gust Generation Mechanism 

The experiments described here were performed in the Aerodynamic/Atmospheric Boundary 

Layer (AABL) Wind and Gust Tunnel, which is located in the Wind Simulation and Testing 

Laboratory (WiST Lab) in the Department of Aerospace Engineering at Iowa State 

University. This wind tunnel has an aerodynamic test section of 2.44m (8.0ft) width by 

1.83m (6.0ft) height and an atmospheric boundary layer test section of 2.44m (8.0ft) width by 

2.21m (7.25ft) height, and a designed maximum wind speed of 53m/s (173.9ft/s) in the aero 

section. An active gust generation mechanism was developed and implemented by Haan and 

Sarkar (2006) on this wind tunnel. Several types of gust can be generated by this mechanism, 

such as ramp-up or ramp-down gust, bump-shaped gust and sinusoidal-wave-shaped gust. In 

the experiment of current research, ramp-up, ramp-down and bump-shaped gusts were 

generated and investigated. 

Model Suspension System and Boundary Layer Set-Up  

The section model used in the experiment, as described earlier, is composed of a shallow box 

girder section and two semi-circular fairings at its edges. The length L, chord length B and 

thickness D of the model are about 1.83m, 0.74m, and 0.051m, respectively, making this 

model about 2.5 times larger than the section model described earlier that was used for the 

extraction of the aeroelastic load functions. The scale of this model to a real bridge deck in 

the field is about 1:50, considering a bridge deck could have a width of about 37m. A cross 

section diagram of current model is shown in Figure 1.  
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Figure 1. Cross section of the experimental model 

To reduce the edge effects, two end plates were used as seen in Figure 2. The two-DOF 

model suspension system used in this experiment is shown in Figures 2 and 3. The 

suspension system enables vertical and torsional motions of the model using twelve linear 

helical springs, six at each end of the model, while horizontal motion is restricted by two leaf 

springs attached at both ends of the model shaft, as shown in Figure 3. Before running wind 

tunnel tests on the model, free vibration tests without wind were performed to identify the 

stiffness coefficients of the entire vibration system (with the model mounted) for the two 

degrees of freedom (vertical h and torsional ) as Kh = 2843.8 N/m and Kα = 119.5 Nm/rad, 

respectively. The natural frequencies of the two degree-of-freedom system at zero wind were 

measured as fh = 2.015Hz, and fα = 1.954Hz, and the damping ratios of the system at zero 

wind were measured as ζh = 1.02% and ζα = 0.69%, along the vertical and torsional degrees of 

freedom, respectively. The mass and mass moment of inertia of the entire dynamic system 

were M = 18.3kg, and I = 0.8275kgm
2
, respectively.   
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Figure 2. Experimental model and set-up (view from upstream) 

 

Figure 3. Experimental model and set-up (view from side) 

In the current research, to investigate effect of turbulence on time-domain wind load 

prediction, two different types of set-up were used to generate boundary layers in front of the 

experimental model. The boundary layer set-ups are shown in Figure 4 and Figure 5. The 

first set-up consists of three spires, a wall and equally-spaced chains all the way to the 
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position of the model. The second set-up consists of three spires, a wall, and equally-spaced 

chains in the first half of the fetch and arranged in staggered configurations in rest of the 

fetch up to the position of the model. 

             

Figure 4. Boundary layer set-up 1                       Figure 5. Boundary layer set-up 2 

Wind Velocity Measurement 

In this experiment, wind velocity time histories in three directions (u(t), v(t) and w(t)) were 

measured by a Cobra Probe (Turbulent Flow Instrumentation) placed right in front of the 

bridge deck model, as shown in Figure 2. The sampling rate for wind velocity was set at 

312.5 Hz. 

Model Displacement Measurement 

The vertical or torsional displacement of the model was measured by measuring the elastic 

force in each of the four helical springs which is connected to the model at one end and a 

strain gage force transducer at the other end, as can be seen in Figure 3. The force 

transducers were mounted at two opposite corner positions at both ends of the model span to 

eliminate the spurious modes of vibration of the model such as rotation about its centerline. 

LabView program was used for data acquisition, where the sampling rate was set at 125Hz.  
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Aerodynamic Pressure Measurement 

Aerodynamic pressures were also recorded in the experiment to assess aeroelastic loads for 

comparison with those obtained from numerical simulation. Surface pressures were measured 

on the model including the fairings through a row of pressure taps located on the upper and 

lower surfaces of the model along the mid-plane. In total, forty-two pressure taps were used 

in this test, equally distributed on both the surfaces. The pressure taps are denser on the 

upstream side than the downstream side of the model. Two 64-channel pressure modules 

(Scanivalve ZOC33/64 Px) were used to measure the pressure. To minimize the error 

introduced from pressure tubing, pressure modules were placed inside the model, so that 

tubing length can be significantly shortened, as shown in Figure 6.  

 

Figure 6. Pressure modules (Scanivalve ZOC 33/64 Px) mounted inside the model  

A separate program (RAD) collected the pressure data. The sampling rate for pressure 

measurement was 62.5Hz (half of displacement sampling rate for convenience of 

synchronization) in the experiment.  

Pressure Modules 
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Data Synchronization 

To synchronize the displacement data with the pressure data and the wind velocity data, both 

the pressure transducers and the Cobra Probe were set to work in an external-triggered mode. 

The LabView program that was used for displacement data acquisition was programmed to 

output a digital signal when the displacement data acquisition started, so that the pressure 

data acquisition system and the Cobra Probe data acquisition system would receive this 

external signal and get triggered to start the data acquisition.  

Results and Discussion 

Before performing tests on the bridge deck model, to obtain the information about the wind 

field generated from two types of boundary layer set-ups, wind velocity profiles were 

measured using Cobra Probe mounted on a traverse system as shown in Figure 7. With the 

traverse system which is driven by the motor mounted on the top, the Cobra Probe can move 

continuously in vertical direction. In the experiment, the wind velocity was measured starting 

from the floor to the height of 0.65m. The height of the equilibrium position of the bridge 

deck model is about 0.55m which falls in the range of wind velocity measurement. 

Considering the length scale of this model (1:50) as mentioned earlier, the height of the 

model in the wind tunnel approximately corresponds to a height of 27.5m in the field which 

is reasonable for a bridge. The measured mean wind velocity profiles in horizontal direction 

for two different boundary layer set-ups are plotted in Figure 8. Turbulence intensity profiles 

in horizontal and vertical directions are plotted in Figure 9 and 10, respectively. It can be 

seen that the Boundary Layer 2, which has a section of chains replaced by roughness blocks, 



www.manaraa.com

118 
 

has a lower mean wind velocity and higher turbulence intensity than Boundary Layer 1 at the 

height where the model is placed (0.55m), though the difference is not significant.  

 
Figure 7. Traverse system used in velocity profile measurement 

 

Figure 8. Profile of mean velocity in horizontal direction  

 

Figure 9. Profile of turbulence intensity in horizontal direction  

Motor

Model Elevation 

Model Elevation 
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Figure 10. Profile of turbulence intensity in vertical direction  

In model vibration tests, stationary wind and three other types of gusty winds (ramp-up, 

ramp-down and bump-shaped) were generated and applied on the model. From observation 

of experimental results, ramp-down gust case is similar to ramp-up gust case. Thus, for 

conciseness, the time histories measured in ramp-down gust case are not shown here. Time 

histories for stationary wind case, ramp-up gust case and bump-shaped gust case with first 

boundary layer set-up are shown in Figure 11-13, and those with second boundary layer set-

up are shown in Figure 14-16. In the plots, the aeroelastic lift and moment coefficients are 

calculated using Equation (6) and (7). 

BtU

tL
tCl

)(2/1

)(
)(

2
                       (6) 

22 )(2/1

)(
)(

BtU

tM
tCm


                       (7) 

where L(t) and M(t) are aeroelastic lift and moment per unit length obtained numerically or 

experimentally, and U(t) is the moving average of horizontal wind speed  time history.  

Model Elevation 
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Figure 11. Time histories for stationary wind with first boundary layer set-up 
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Figure 12. Time histories for ramp-up wind with first boundary layer set-up 
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Figure 13. Time histories for bump-shaped wind with first boundary layer set-up 
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Figure 14. Time histories for stationary wind with second boundary layer set-up 
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Figure 15. Time histories for ramp-up wind with second boundary layer set-up 
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Figure 16. Time histories for bump-shaped wind with second boundary layer set-up 
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It can be seen from all the plots that the phase angles of aeroelastic load time histories cannot 

be well predicted for these turbulent wind cases. However, the changing of amplitude of load 

time histories as shown in ramp-up and bump-shaped gust cases can be reasonably predicted. 

Since the mean velocities and turbulence intensities of the winds generated by two types of 

boundary layers are close to each other, the obtained displacement and load time histories are 

also similar, except that the model vibrates with slightly larger amplitude in the second 

boundary layer, due to the slightly higher turbulence intensities as shown in Figure 9-10. 

Moreover, it is shown in the plots that load amplitude can be well predicted when model 

rotation angle is within +/-5 degree region, while the amplitude is over-predicted when the 

rotation angle exceeds this range, especially for the lift prediction, which can be seen in 

ramp-up gust cases. The existence of this valid region is expectable, since in the derivation of 

the self-excited load formulation used in current paper, it is assumed that the vibration of the 

structure is in small amplitudes so that the structural displacements and wind loads have a 

linear relationship.  

In an earlier study by Cao and Sarkar (2011), using the same model and set-up, it has already 

been shown that the time domain method works very well in predicting aeroelastic wind 

loads for stationary and gusty winds with very low turbulence intensities. Since the buffeting 

wind loads are very small in smooth wind cases, the research by Cao and Sarkar (2011) 

mainly shows the self-excited wind loads can be predicted accurately by Rational Function 

formulation. Thus, the worse prediction shown in current study should come from the poor 

prediction of the buffeting part of wind loads. Considering the very high turbulence 

intensities generated in current experiment (Iuu ≈ 20%, Iww ≈ 15%), it is possible that the 
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buffeting indicial formulation could not give good predictions for buffeting wind loads since 

the formulation is derived based on the assumption that the turbulent wind velocities are very 

small comparing to mean wind speed which is obviously not true in current experiment.  

To quantitatively compare load coefficient time histories that obtained from experimental 

measurement and numerical simulation, standard deviations and peak values (first/second 

peak) of load coefficient time histories for two different boundary layers were computed and 

listed in Table 1-4. Since each case was repeated three times in the experiment, the results 

listed in the tables are average values calculated from three repeated tests to reduce 

randomness in the results. 

Table 1. Comparison of standard deviation of time histories for the first boundary layer 

 

Standard Deviation 

Stationary Ramp-up Bump-shaped 

Cl_exp 0.21 0.21 0.21 

Cl_simu 0.20 0.24 0.17 

Cm_exp 0.06 0.05 0.05 

Cm_simu 0.04 0.05 0.03 

 

Table 2. Comparison of peak values of time histories for the first boundary layer 

 

Peak Value (first peak) Peak Value (second peak) 

Stationary Ramp-up 

Bump-

shaped Stationary 

Ramp-

up 

Bump-

shaped 

Cl_exp 0.73 0.83 0.70 0.70 0.81 0.68 

Cl_simu 0.93 0.84 0.54 0.92 0.83 0.54 

Cm_exp 0.20 0.22 0.18 0.19 0.21 0.18 

Cm_simu 0.19 0.18 0.11 0.19 0.18 0.11 

 

Table 3. Comparison of standard deviation of time histories for the second boundary layer 
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Standard Deviation 

Stationary 

Ramp-

up 

Bump-

shaped 

Cl_exp 0.21 0.20 0.22 

Cl_simu 0.20 0.27 0.21 

Cm_exp 0.06 0.06 0.06 

Cm_simu 0.04 0.05 0.04 

Table 4. Comparison of peak values of time histories for the second boundary layer 

 

Peak Value (first peak) Peak Value (second peak) 

Stationary 

Ramp-

up 

Bump-

shaped Stationary Ramp-up Bump-shaped 

Cl_exp 0.74 0.81 0.76 0.73 0.79 0.73 

Cl_simu 0.68 1.01 0.79 0.66 0.99 0.78 

Cm_exp 0.23 0.26 0.21 0.22 0.24 0.20 

Cm_simu 0.14 0.19 0.16 0.14 0.19 0.16 

According to the definition of standard deviation, it is used here to evaluate the prediction of 

average amplitudes of whole time histories. As can be seen from Table 1 and 3, with two 

different boundary layer set-ups, the average amplitudes of load coefficient time histories for 

both stationary wind cases and gusty wind (ramp-up and bump-shaped) cases are well 

predicted. The average amplitudes for lift coefficient time histories in ramp-up gust cases are 

predicted worst, especially for the second boundary layer set-up. As mentioned in earlier 

discussion for time history plots, this could be caused by the large amplitude vibration exists 

in the second half of ramp-up wind time histories, especially for the second boundary layer 

set-up in which the model vibrates with an even larger amplitude, since the self-excited load 

formulation cannot work well for large amplitude motions.  

The peak values in the tables are used to evaluate the prediction of largest amplitudes which 

could be a major concern in the design process of structures. As shown in Table 2 and 4, the 

largest amplitude prediction for all the cases are reasonably well, even for lift coefficients in 
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ramp-up gust cases where the average amplitude prediction is slightly worse as discussed in 

the last paragraph.  

Conclusion 

Rational Function formulation and buffeting indicial formulation have been validated in 

predicting wind loads in stationary and gusty winds with high turbulence intensities. Two 

types of boundary layers generated in this research are similar, except the second boundary 

layer induced slightly larger amplitude vibration of the model in the tests, due to the slightly 

higher turbulence intensity. As shown in the experimental results of both boundary layer set-

ups, the phase angles of load time histories cannot be well predicted, while the amplitude 

prediction is reasonable. It has been observed that the wind loads are over-predicted in 

amplitude when the model rotation angle is out of region of +/-5 degree which could result 

from the linearity assumption made in the derivation of time domain formulations. As a 

result, the predicted wind loads for ramp-up gust cases are not as good as other cases, since 

the model starts to vibrate in very large amplitude after wind velocity reaches a higher value 

in second half time period of the test. In the future, to evaluate buffeting load prediction 

separately, fixed model tests could be carried out in winds with several different turbulence 

levels. Some modification might be made to the current buffeting indicial function 

formulation so that the accuracy of buffeting load prediction and hence the total aeroelastic 

load prediction in turbulent wind environment can be improved. 
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CHAPTER 6. GENERAL CONCLUSIONS 

GENERAL DISCUSSION 

The current research work includes following three parts: (a) the development of an 

algorithm to extract time domain Rational Function Coefficients using phase lags identified 

from forced vibration experiment which is then validated by one-DOF vibration tests on a 

streamlined section model, (b) the development of an improved algorithm which is based on 

direct least squares method to extract Rational Function Coefficients using forced vibration 

technique and applications on both a streamlined and a bluff cross section model with two-

DOF motions, and (c) the validation of time domain method for aeroelastic wind load 

prediction  through free vibration tests of a section model in smooth/turbulent and 

stationary/gusty winds. 

Extraction of rational functions by forced vibration method for time-domain analysis of 

long-span bridges 

A new method has been introduced to directly extract rational function coefficients or 

rational functions from forced vibration experiment. Through numerical tests, it has been 

shown that the algorithm is feasible for extraction of rational function coefficients and it is 

quite robust. The validation results of the obtained rational functions show that flutter 

derivatives extracted from this RFA method are generally in good agreement with those from 

earlier free vibration experimental results, given their sensitivity to noise in the signals.  
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Identification of Rational Functions using Two-Degree-of-Freedom Model by Forced 

Vibration Method 

A new algorithm has been developed for direct extraction of all the Rational Function 

Coefficients for one, two or three-DOF forced vibration wind tunnel tests on a section model. 

The algorithm does not use phase angle difference between displacement and aeroelastic 

force time histories in the extraction procedure like in previous methods available in the 

literature. Thus, the error introduced in all the parameters from error in identification of one 

parameter, i.e. phase angle difference, is eliminated in this algorithm. Rather this new 

algorithm uses all the recorded data points to identify the unknown parameters in a least 

square sense that minimizes the error originating from the noisy signals. The proposed 

algorithm is more efficient than others since it requires data collected at two wind speeds 

only to extract the full set of Rational Function Coefficients for a two-DOF system. As part 

of the validation process, the Rational Functions obtained in this paper were converted into 

flutter derivatives and were compared with directly extracted ones obtained in earlier 

experiments by other scholars, for both streamlined and bluff section models. The 

comparison is well, especially for the streamlined model case. Moreover, it was shown that 

the Rational Function Coefficients obtained using this algorithm can be used to accurately 

predict the self-excited forces acting on a section model at a given wind speed, for both a 

streamlined cross section and a bluff cross section.  Further, the flutter speed of the 

streamlined cross section bridge deck model was predicted using Rational Function 

Coefficients obtained here and has been shown to match with earlier results.  
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Time-Domain Aeroelastic Loads and Response of Flexible Bridges in Gusty and 

Turbulent Wind: Prediction and Experimental Validation 

Time domain method was used to predict aeroelastic loads on a streamlined bridge section 

model while it is vibrating in stationary and gusty straight-line winds. The Rational Functions 

and buffeting indicial functions were used to calculate self-excited forces and buffeting 

forces, respectively. The numerically simulated loads were compared with experimental 

measurements for both stationary wind case and gusty wind case.  It was demonstrated here 

that the prediction of aeroelastic loads using the time-domain formulation can be made. The 

comparison between predictions and measurements was quite well in the stationary wind 

case, while a similar comparison in the gusty wind case was not as good but reasonable 

within the error bounds expected. The slightly worse performance of time domain method in 

gusty wind case is explainable since all the formulations used in this paper were originally 

derived for stationary wind problems and the aeroelastic parameters used here were also 

extracted in stationary winds. However, a better prediction is expected if the time domain 

formulations are revised to fit for the gusty wind cases which could be investigated in future 

work.  

Rational Function formulation and buffeting indicial formulation have been validated in 

predicting wind loads in stationary and gusty winds with high turbulence intensities. Two 

types of boundary layers generated in this research are similar, except the second boundary 

layer induced slightly larger amplitude vibration of the model in the tests, due to the slightly 

higher turbulence intensity. As shown in the experimental results of both boundary layer set-

ups, the phase angles of load time histories cannot be well predicted, while the amplitude 
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prediction is reasonable. It has been observed that the wind loads are over-predicted in 

amplitude when the model rotation angle is out of region of +/-5 degree which could result 

from the linearity assumption made in the derivation of time domain formulations. As a 

result, the predicted wind loads for ramp-up gust cases are not as good as other cases, since 

the model starts to vibrate in very large amplitude after wind velocity reaches a higher value 

in second half time period of the test.  

RECOMMENDATIONS FOR FUTURE WORK 

In current research, the improved algorithm for extraction of Rational Function Coefficients 

has been applied on a two-DOF motion system and with smooth wind environment. However, 

the algorithm itself can be simply extended to three-DOF motion system, where the lateral 

motion could also be included. Thus, once a driving mechanism for three-DOF motion could 

be designed and set up in the wind tunnel, the forced vibration experiment could be 

performed to extract all the Rational Function Coefficients for the three-DOF system 

simultaneously using the algorithm developed in current research. Moreover, since the 

algorithm is based on forced vibration technique which can be used in turbulent wind 

environment, it can be applied to investigate if the Rational Function Coefficients are 

consistent or will change in the winds with different turbulence intensities.  

In the future, to evaluate buffeting load prediction separately, fixed model tests could be 

carried out in the winds with several different turbulence levels. In this way, time domain 

formulations for aeroelastic wind loads could be investigated more clearly, and it will be 

known that which part of formulation needs to be modified to improve the total prediction of 

wind loads. Furthermore, the performance of the time-domain load prediction method for 
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winds that are non-uniform with height such as boundary-layer wind, and not straight-line 

but highly non-stationary, such as microbursts or tornadoes, could be investigated. 
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